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Julia sets

Study the dynamics of f (z) = z2 + c for c ∈ C fixed

z1 = f (z0), z2 = f (z1), . . . , zn = f (zn−1) = f n(z0)

What happens with the orbit of z0 ∈ C under f ?

M unbounded orbits

attraction basin of ∞ A(∞)

M bounded orbits

filled Julia set K

M common boundary Julia set J
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Julia set catalog: the Mandelbrot set

demo. . .
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c ∈M := 0 ∈ Kc

Julia–Fatou dichotomy
c ∈M ⇒ Jc is connected
c 6∈ M ⇒ Jc is a Cantor set
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Escape-time algorithm

for z0 in a grid of points in Ω
z ← z0
n← 0
while |z | ≤ R and n ≤ N do

z ← z2 + c
n← n + 1

paint z0 with color n

escape radius
R = max(|c|, 2) J ⊂ B(0,R)
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Escape radius

Lemma. If z ∈ C and |z | > R = max(|c |, 2) ⇒ |f n(z)| → ∞ as n→∞.

Proof. The triangle inequality gives

|z2| = |z2 + c − c | ≤ |z2 + c|+ |c |

and so

|f (z)| = |z2+c | ≥ |z2|−|c | = |z |2−|c | > |z |2−|z | = |z |(|z |−1) > |z | > R

Iterating, we get |f n(z)| > |z |(|z | − 1)n →∞ because |z | − 1 > 1.

Corollary. Every unbounded orbit escapes to ∞. A(∞)
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Why distrust this beautiful image?

I Spatial sampling
need fine grid
what happens between samples?

I Partial orbits

program cannot run forever

I Floating-point rounding errors

squaring needs double digits
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Why distrust this beautiful image?

I Spatial sampling
Compute color on grid points
Cannot be sure grid is fine enough
Cannot be sure behavior at sample points is typical
Finer grid ⇒ more detail

I Partial orbits
Can only compute partial orbits
Cannot be sure partial orbits are long enough
Longer orbits ⇒ more detail

I Floating-point errors
z2 needs twice the number of digits that z needs
Do rounding errors during iteration influence classification of points?
Multiple-precision ⇒ more detail (deep zoom)



You can trust our method

I No spatial sampling

Classify entire rectangles in the complex plane
Spatial resolution limited by available memory
Deeper quadtree ⇒ more detail

I No orbits

Evaluate f once on each cell using interval arithmetic
Perform no function iteration at all
Use cell mapping and color propagation in graphs

I No floating-point errors

All numbers are dyadic fractions with restricted range and precision
Use error-free fixed-point arithmetic
Precision depends only on spatial resolution
Standard double-precision floating-point enough for huge images
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Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I white rectangles
contained in A(∞)

I black rectangles
contained in K

I gray rectangles
contain J

certified decomposition
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Quadtree c = −1 level 0



Quadtree c = −1 level 1



Quadtree c = −1 level 2



Quadtree c = −1 level 3



Quadtree c = −1 level 4



Quadtree c = −1 level 5



Quadtree c = −1 level 6
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Quadtree c = −1 level 9



Quadtree c = −1 level 10



Quadtree c = −1 level 11



Quadtree c = −1 level 12



Quadtree c = −1 level 13



Quadtree c = −1 level 14



Adaptive approximation c = −1 level 14
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Adaptive approximation c = −1 level 4
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Adaptive approximation c = −1 level 11
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Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I refinement

I cell mapping

I color propagation



Cell mapping

Directed graph on the leaves of the quadtree and exterior

I edges emanate from each leaf gray cell A

I add edge A→ B for each leaf cell B that intersects f (A)

f (A) ⊆
⋃

A→B

B

Conservative estimate of the dynamics

Avoid point sampling
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Cell mapping source cell leaf gray cell



Cell mapping exact image under f



Cell mapping bounding box interval arithmetic



Cell mapping quadtree traversal



Cell mapping target cells contain exact image



Cell mapping edges



Cell mapping edges demo. . .



Our algorithm

quadtree for
Ω = [−R,R]×[−R,R]

I refinement

I cell mapping

I color propagation



Color propagation

Propagate white and black to gray cells

I new white cells
gray cells for which all paths end in white cells

I new black cells
gray cells for which no path ends in a white cell

Graph traversals replace function iteration

Avoid floating-point errors
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The algorithm initial approximation



The algorithm refinement



The algorithm cell mapping



The algorithm new white cells. . .



The algorithm new white cells. . .



The algorithm new white cells



The algorithm gray cells that reach white. . .



The algorithm gray cells that reach white. . .



The algorithm gray cells that reach white



The algorithm new black cells



Adaptive approximation examples



Adaptive approximation c = 0.12 + 0.30 i level 0
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Adaptive approximation c = −0.12 + 0.60 i level 0
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Adaptive approximation c = i level 0
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Adaptive approximation c = i level 5
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Adaptive approximation c = i level 8
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Adaptive approximation c = i level 10



Adaptive approximation c = i level 11
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Adaptive approximation c = i level 13
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Adaptive approximation c = i



Adaptive approximation c = i



Adaptive approximation c = −0.25 + 0.74 i level 0
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Applications

certified numerical results

I Image generation

large images
smaller images with anti-aliasing

I Point and box classification

quadtree traversal + one function evaluation if gray

I Fractal dimension of Julia set

(Ruelle)

upper bound dimH = 1 +
|c|2

4 log 2
+ · · ·

I Area of filled Julia set

(Milnor)

lower and upper bounds π(1− |p1(c)|2 − 3|p2(c)|2 − 5|p3(c)|2 − · · · )

I Diameter of Julia set

lower and upper bounds
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Area of filled Julia sets after Milnor

Inverse Böttcher map ψ : C \ D→ C \ K

ψ(w2) = ψ(w)2 + c

Laurent series near ∞

ψ(w) = w
(

1 +
a2
w2

+
a4
w4

+
a6
w6

+ · · ·
)

a2 = −c

2
a2n =

1

2
(an − a2n)−

∑
2≤j<n
j even

aja2n−j a2n+1 = 0

Gronwall’s area theorem

area(K ) = π(1− |a2|2 − 3|a4|2 − 5|a6|2 − · · · )

Truncating series gives upper bounds series converges slowly

Quadtree gives both lower and upper bounds



Area of filled Julia sets after Milnor

224 APPENDIX A

This follows, since we can choose : [)) -+ U mapping the origin to
any given point of U, and since the Poincare metric at the center of [)) is
21d7]1. 0

As an example, if U is a half-plane, then the Poincare metric precisely
agrees with the (l/r)-metric Idzl/r.

-2 -1 0
Figure 45. Upper bounds for the area of the filled Julia
set for fc(z) = z2+ c in the range -2::; c :::; .25.

Concluding Problem

Problem A-I. Area of the filled Julia set. Consider the polynomial
map fc(z) == z2 + c. Let w = ¢(z) be the associated Bottcher map near
infinity, and let z = (w) be the inverse map. (1) In analogy with equation
(9 : 5), show that satisfies the identity

==
and conclude that has Laurent series of the form

'ljJ(w) = w(l + Pl(C)jw2 + P2(C)jw4 + P3(C)jw6 + ... ),
where each Pk(c) is a polynomial of degree k with rational coefficients.
(2) Let K c be the filled Julia set for f c . Show that the area of K c is
upper semicontinuous* as a function of c. (3) If K; is connected, or in
other words if c belongs to the Mandelbrot * set, show by Lemma A.4 that

* Compare Lemma 11.15 for semicontinuity and Appendix G for the Mandelbrot set.
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Area of filled Julia set −1.25 ≤ c ≤ 0.25
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Area of filled Julia set −1.25 ≤ c ≤ 0.25 level 19

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4

error



Limitations

I Memory

depth of quadtree and size of cell graph limited by available memory
currently spatial resolution ≈ 4× 10−6

cannot reach 20 levels

I Need to explore Ω ⊇ [−R,R]× [−R,R]

even if region of interest is smaller
limited amount of zoom
limitation inherent to using cell mapping because f is transitive on J
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Future work higher-degree polynomials

I Escape radius

R =
1 + |ad |+ · · ·+ |a0|

|ad |

is an escape radius for f (z) = adz
d + · · ·+ a0 (Douady)

I Bounding box

needs interval arithmetic with directed rounding
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Cubic Julia set z3 + 0.38
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Cubic Julia set z3 + 0.41



Cubic Julia set z3 − 3a2 + b level 0



Cubic Julia set z3 − 3a2 + b level 1



Cubic Julia set z3 − 3a2 + b level 2



Cubic Julia set z3 − 3a2 + b level 3



Cubic Julia set z3 − 3a2 + b level 4



Cubic Julia set z3 − 3a2 + b level 5



Cubic Julia set z3 − 3a2 + b level 6



Cubic Julia set z3 − 3a2 + b level 7



Cubic Julia set z3 − 3a2 + b level 8



Cubic Julia set z3 − 3a2 + b level 9



Cubic Julia set z3 − 3a2 + b level 10



Cubic Julia set z3 − 3a2 + b level 11



Cubic Julia set z3 − 3a2 + b level 12



Cubic Julia set z3 − 3a2 + b level 13



Cubic Julia set z3 − 3a2 + b level 14



Cubic Julia set z3 − 3a2 + b



Cubic Julia set z3 − 3a2 + b



Future work Newton’s method

I Which points converge to which root? Cayley (1879)

I Points that do not converge form the Julia set

I No escape radius

I Need to find explicit attracting regions around roots?



Future work Newton’s method z3 = 1
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Julia set panorama

http://monge.visgraf.impa.br/panorama/viewer/index.html?

img=../julia-256GP/julia.xml

http://monge.visgraf.impa.br/panorama/viewer/index.html?img=../julia-256GP/julia.xml
http://monge.visgraf.impa.br/panorama/viewer/index.html?img=../julia-256GP/julia.xml


Images of Julia sets that you can trust

Thanks!
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Interval arithmetic f (z) = z2 + c

(x , y) 7→ (x2 − y2 + a, 2xy + b)

function f(xmin,xmax,ymin,ymax)

local x2min,x2max=isqr(xmin,xmax)

local y2min,y2max=isqr(ymin,ymax)

local xymin,xymax=imul(xmin,xmax,ymin,ymax)

return x2min-y2max+a,x2max-y2min+a,2*xymin+b,2*xymax+b

end

function imul(xmin,xmax,ymin,ymax)

local mm=xmin*ymin

local mM=xmin*ymax

local Mm=xmax*ymin

local MM=xmax*ymax

local m,M=mm,mm

if m>mM then m=mM elseif M<mM then M=mM end

if m>Mm then m=Mm elseif M<Mm then M=Mm end

if m>MM then m=MM elseif M<MM then M=MM end

return m,M

end



Interval arithmetic f (z) = z2 + c

(x , y) 7→ (x2 − y2 + a, 2xy + b)

function f(xmin,xmax,ymin,ymax)

local x2min,x2max=isqr(xmin,xmax)

local y2min,y2max=isqr(ymin,ymax)

local xymin,xymax=imul(xmin,xmax,ymin,ymax)

return x2min-y2max+a,x2max-y2min+a,2*xymin+b,2*xymax+b

end

function isqr(xmin,xmax)

local u=xmin^2

local v=xmax^2

if xmin<=0 and 0<=xmax then

if u<v then return 0,v else return 0,u end

else

if u<v then return u,v else return v,u end

end

end



Interval arithmetic f (z) = z3 + c

(x , y) 7→ (x3 − 3xy2 + a,−y3 + 3x2y + b)

function f(xmin,xmax,ymin,ymax)

local x2min,x2max=isqr(xmin,xmax)

local y2min,y2max=isqr(ymin,ymax)

local xy2min,xy2max=imul(xmin,xmax,y2min,y2max)

local x2ymin,x2ymax=imul(x2min,x2max,ymin,ymax)

local x3min,x3max=icub(xmin,xmax)

local y3min,y3max=icub(ymin,ymax)

return x3min-3*xy2max+a, x3max-3*xy2min+a,

-y3max+3*x2ymin+b,-y3min+3*x2ymax+b

end

function icub(xmin,xmax)

return xmin^3,xmax^3

end


