Images of Julia sets that you can trust

Luiz Henrique de Figueiredo

Can we trust this beautiful image?

Julia sets

Study the dynamics of $f(z)=z^{2}+c$ for $c \in \mathbb{C}$ fixed

$$
z_{1}=f\left(z_{0}\right), \quad z_{2}=f\left(z_{1}\right), \quad \ldots, \quad z_{n}=f\left(z_{n-1}\right)=f^{n}\left(z_{0}\right)
$$

What happens with the orbit of $z_{0} \in \mathbb{C}$ under f ?

Julia sets

\square unbounded orbits

- bounded orbits

Julia sets

unbounded orbits
attraction basin of $\infty \quad A(\infty)$ bounded orbits

Julia sets

unbounded orbits bounded orbits
attraction basin of $\infty \quad A(\infty)$ filled Julia set

K

Julia sets

$\square \quad$ unbounded orbits
bounded orbits
\square common boundary $\begin{array}{lc}\text { attraction basin of } \infty & A(\infty) \\ \text { filled Julia set } & K \\ \text { Julia set } & J\end{array}$

Julia set zoo

Julia set catalog: the Mandelbrot set

$$
c \in \mathcal{M}:=0 \in K_{c}
$$

Julia-Fatou dichotomy $c \in \mathcal{M} \Rightarrow J_{c}$ is connected $c \notin \mathcal{M} \Rightarrow J_{c}$ is a Cantor set

Julia set catalog: the Mandelbrot set

 demo...

$$
c \in \mathcal{M}:=0 \in K_{c}
$$

Julia-Fatou dichotomy $c \in \mathcal{M} \Rightarrow J_{c}$ is connected $c \notin \mathcal{M} \Rightarrow J_{c}$ is a Cantor set

Why distrust this beautiful image?

Why distrust this beautiful image?

Escape-time algorithm

for z_{0} in a grid of points in Ω

$$
\begin{aligned}
& z \leftarrow z_{0} \\
& n \leftarrow 0
\end{aligned}
$$

$$
\text { while }|z| \leq R \text { and } n \leq N \text { do }
$$

$$
z \leftarrow z^{2}+c
$$

$$
n \leftarrow n+1
$$

paint z_{0} with color n

Why distrust this beautiful image?

Escape-time algorithm

for z_{0} in a grid of points in Ω

$$
\begin{aligned}
& z \leftarrow z_{0} \\
& n \leftarrow 0 \\
& \text { while }|z| \leq R \text { and } n \leq N \text { do } \\
& \quad z \leftarrow z^{2}+c \\
& \quad n \leftarrow n+1
\end{aligned}
$$

paint z_{0} with color n
escape radius
$R=\max (|c|, 2) \quad J \subset B(0, R)$

Escape radius

Lemma. If $z \in \mathbb{C}$ and $|z|>R=\max (|c|, 2) \Rightarrow\left|f^{n}(z)\right| \rightarrow \infty$ as $n \rightarrow \infty$.
Proof. The triangle inequality gives

$$
\left|z^{2}\right|=\left|z^{2}+c-c\right| \leq\left|z^{2}+c\right|+|c|
$$

and so
$|f(z)|=\left|z^{2}+c\right| \geq\left|z^{2}\right|-|c|=|z|^{2}-|c|>|z|^{2}-|z|=|z|(|z|-1)>|z|>R$
Iterating, we get $\left|f^{n}(z)\right|>|z|(|z|-1)^{n} \rightarrow \infty$ because $|z|-1>1$.

Corollary. Every unbounded orbit escapes to ∞.

Why distrust this beautiful image?

Escape-time algorithm

for z_{0} in a grid of points in Ω

$$
\begin{aligned}
& z \leftarrow z_{0} \\
& n \leftarrow 0 \\
& \text { while }|z| \leq R \text { and } n \leq N \text { do } \\
& \quad z \leftarrow z^{2}+c \\
& \quad n \leftarrow n+1
\end{aligned}
$$

paint z_{0} with color n
escape radius
$R=\max (|c|, 2) \quad J \subset B(0, R)$

Why distrust this beautiful image?

Escape-time algorithm
for z_{0} in a grid of points in Ω
$z \leftarrow z_{0}$
$n \leftarrow 0$
while $|z| \leq R$ and $n \leq N$ do
$z \leftarrow z^{2}+c$
$n \leftarrow n+1$
paint z_{0} with color n

Why distrust this beautiful image?

Escape-time algorithm

- Spatial sampling need fine grid what happens between samples?
for z_{0} in a grid of points in Ω

$$
\begin{aligned}
& z \leftarrow z_{0} \\
& n \leftarrow 0 \\
& \text { while }|z| \leq R \text { and } n \leq N \text { do } \\
& \quad z \leftarrow z^{2}+c \\
& \quad n \leftarrow n+1 \\
& \text { paint } z_{0} \text { with color } n
\end{aligned}
$$

Why distrust this beautiful image?

Escape-time algorithm

- Spatial sampling
- Partial orbits program cannot run forever
for z_{0} in a grid of points in Ω

$$
\begin{aligned}
& z \leftarrow z_{0} \\
& n \leftarrow 0 \\
& \text { while }|z| \leq R \text { and } n \leq N \text { do } \\
& \quad z \leftarrow z^{2}+c \\
& \quad n \leftarrow n+1 \\
& \text { paint } z_{0} \text { with color } n
\end{aligned}
$$

Why distrust this beautiful image?

Escape-time algorithm

- Spatial sampling
- Partial orbits for z_{0} in a grid of points in Ω

$$
\begin{aligned}
& z \leftarrow z_{0} \\
& n \leftarrow 0 \\
& \text { while }|z| \leq R \text { and } n \leq N \text { do } \\
& \quad z \leftarrow z^{2}+c \\
& \quad n \leftarrow n+1 \\
& \text { paint } z_{0} \text { with color } n
\end{aligned}
$$

- Floating-point rounding errors squaring needs double digits

Why distrust this beautiful image?

- Spatial sampling

Compute color on grid points
Cannot be sure grid is fine enough
Cannot be sure behavior at sample points is typical
Finer grid \Rightarrow more detail

- Partial orbits

Can only compute partial orbits
Cannot be sure partial orbits are long enough
Longer orbits \Rightarrow more detail

- Floating-point errors
z^{2} needs twice the number of digits that z needs
Do rounding errors during iteration influence classification of points?
Multiple-precision \Rightarrow more detail (deep zoom)

You can trust our method

- No spatial sampling
- No orbits
- No floating-point errors

You can trust our method

- No spatial sampling

Classify entire rectangles in the complex plane Spatial resolution limited by available memory Deeper quadtree \Rightarrow more detail

- No orbits
- No floating-point errors

You can trust our method

- No spatial sampling

Classify entire rectangles in the complex plane Spatial resolution limited by available memory Deeper quadtree \Rightarrow more detail

- No orbits

Evaluate f once on each cell using interval arithmetic Perform no function iteration at all
Use cell mapping and color propagation in graphs

- No floating-point errors

You can trust our method

- No spatial sampling

Classify entire rectangles in the complex plane Spatial resolution limited by available memory Deeper quadtree \Rightarrow more detail

- No orbits

Evaluate f once on each cell using interval arithmetic Perform no function iteration at all
Use cell mapping and color propagation in graphs

- No floating-point errors

All numbers are dyadic fractions with restricted range and precision
Use error-free fixed-point arithmetic
Precision depends only on spatial resolution
Standard double-precision floating-point enough for huge images

Our algorithm

quadtree for
$\Omega=[-R, R] \times[-R, R]$

- white rectangles contained in $A(\infty)$
- black rectangles contained in K
- gray rectangles contain J

Our algorithm

quadtree for
$\Omega=[-R, R] \times[-R, R]$

- white rectangles contained in $A(\infty)$
- black rectangles contained in K
- gray rectangles contain J
certified decomposition

Our algorithm

quadtree for
$\Omega=[-R, R] \times[-R, R]$

- refinement
- cell mapping
- color propagation

Our algorithm

quadtree for
$\Omega=[-R, R] \times[-R, R]$

- refinement
- cell mapping
- color propagation

Quadtree
 $c=-1 \quad$ level 0

Quadtree
 $c=-1 \quad$ level 1

Quadtree
 $c=-1$
 level 2

Quadtree
 $c=-1 \quad$ level 3

Quadtree
 $c=-1$
 level 4

Quadtree
 $c=-1 \quad$ level 5

Quadtree
 $c=-1$
 level 6

Quadtree
 $c=-1 \quad$ level 7

Quadtree
 $c=-1 \quad$ level 8

Quadtree
 $c=-1 \quad$ level 9

Quadtree
 $c=-1 \quad$ level 10

Quadtree
 $c=-1 \quad$ level 11

Quadtree
 $c=-1 \quad$ level 12

Quadtree
 $c=-1 \quad$ level 13

Quadtree
 $c=-1 \quad$ level 14

Adaptive approximation $\quad c=-1 \quad$ level 14

Adaptive approximation $\quad c=-1 \quad$ level 1

Adaptive approximation $\quad c=-1 \quad$ level 2

Adaptive approximation $\quad c=-1 \quad$ level 3

Adaptive approximation $\quad c=-1 \quad$ level 4

Adaptive approximation $\quad c=-1 \quad$ level 5

Adaptive approximation $\quad c=-1 \quad$ level 6

Adaptive approximation $\quad c=-1 \quad$ level 7

Adaptive approximation $\quad c=-1 \quad$ level 8

Adaptive approximation $\quad c=-1 \quad$ level 9

Adaptive approximation $\quad c=-1 \quad$ level 10

Adaptive approximation $\quad c=-1 \quad$ level 11

Adaptive approximation $\quad c=-1 \quad$ level 12

Adaptive approximation $\quad c=-1 \quad$ level 13

Adaptive approximation $\quad c=-1 \quad$ level 14

Adaptive approximation $c=-1$

Adaptive approximation $c=-1$

Our algorithm

quadtree for
$\Omega=[-R, R] \times[-R, R]$

- refinement
- cell mapping
- color propagation

Cell mapping

Directed graph on the leaves of the quadtree and exterior

- edges emanate from each leaf gray cell A
- add edge $A \rightarrow B$ for each leaf cell B that intersects $f(A)$

$$
f(A) \subseteq \bigcup_{A \rightarrow B} B
$$

Cell mapping

Directed graph on the leaves of the quadtree and exterior

- edges emanate from each leaf gray cell A
- add edge $A \rightarrow B$ for each leaf cell B that intersects $f(A)$

$$
f(A) \subseteq \bigcup_{A \rightarrow B} B
$$

Conservative estimate of the dynamics

Avoid point sampling

Cell mapping
 source cell leaf gray cell

Cell mapping exact image under f

Cell mapping
 bounding box
 interval arithmetic

Cell mapping

quadtree traversal

Cell mapping

Cell mapping edges

Cell mapping
 edges demo...

Our algorithm

quadtree for
$\Omega=[-R, R] \times[-R, R]$

- refinement
- cell mapping
- color propagation

Color propagation

Propagate white and black to gray cells

- new white cells
gray cells for which all paths end in white cells
- new black cells
gray cells for which no path ends in a white cell

Color propagation

Propagate white and black to gray cells

- new white cells
gray cells for which all paths end in white cells
- new black cells
gray cells for which no path ends in a white cell

Graph traversals replace function iteration

Avoid floating-point errors

The algorithm initial approximation

The algorithm
cell mapping

The algorithm
new white cells. . .

The algorithm
new white cells. . .

The algorithm
new white cells

The algorithm
gray cells that reach white...

The algorithm
gray cells that reach white...

The algorithm
gray cells that reach white

The algorithm
new black cells

Adaptive approximation examples

Adaptive approximation $\quad c=0.12+0.30 i$ level 3

Adaptive approximation $\quad c=0.12+0.30 i \quad$ level 4

Adaptive approximation $\quad c=0.12+0.30 i \quad$ level 6

Adaptive approximation $\quad c=0.12+0.30 i \quad$ level 7

Adaptive approximation $\quad c=0.12+0.30 i$ level 8

Adaptive approximation $\quad c=0.12+0.30 i$ level 9

Adaptive approximation $\quad c=0.12+0.30 i \quad$ level 10

Adaptive approximation $\quad c=0.12+0.30 i \quad$ level 11

Adaptive approximation $\quad c=0.12+0.30 i \quad$ level 12

Adaptive approximation $\quad c=0.12+0.30 i \quad$ level 13

Adaptive approximation $\quad c=0.12+0.30 i \quad$ level 14

Adaptive approximation
 $c=0.12+0.30 i$

Adaptive approximation $c=0.12+0.30 i$

Adaptive approximation $\quad c=-0.12+0.60 i \quad$ level 3

Adaptive approximation $\quad c=-0.12+0.60 i \quad$ level 4

Adaptive approximation $\quad c=-0.12+0.60 i$ level 5

Adaptive approximation $\quad c=-0.12+0.60 i$ level 6

Adaptive approximation $\quad c=-0.12+0.60 i \quad$ level 7

Adaptive approximation $\quad c=-0.12+0.60 i \quad$ level 8

Adaptive approximation $\quad c=-0.12+0.60 i \quad$ level 9

Adaptive approximation $\quad c=-0.12+0.60 i$ level 10

Adaptive approximation $\quad c=-0.12+0.60 i \quad$ level 11

Adaptive approximation $\quad c=-0.12+0.60 i \quad$ level 12

Adaptive approximation $\quad c=-0.12+0.60 i$ level 13

Adaptive approximation $\quad c=-0.12+0.60 i \quad$ level 14

Adaptive approximation $c=-0.12+0.60 i$

Adaptive approximation $c=-0.12+0.60 i$

Adaptive approximation $\quad c=-0.12+0.74 i \quad$ level 3

Adaptive approximation $\quad c=-0.12+0.74 i \quad$ level 4

Adaptive approximation $\quad c=-0.12+0.74 i \quad$ level 5

Adaptive approximation $\quad c=-0.12+0.74 i \quad$ level 6

Adaptive approximation $\quad c=-0.12+0.74 i \quad$ level 7

Adaptive approximation $\quad c=-0.12+0.74 i \quad$ level 8

Adaptive approximation $\quad c=-0.12+0.74 i \quad$ level 9

Adaptive approximation $\quad c=-0.12+0.74 i$ level 10

Adaptive approximation $\quad c=-0.12+0.74 i$ level 11

Adaptive approximation $\quad c=-0.12+0.74 i \quad$ level 12

Adaptive approximation $\quad c=-0.12+0.74 i$ level 13

Adaptive approximation $\quad c=-0.12+0.74 i$ level 14

Adaptive approximation
 $c=-0.12+0.74 i$

Adaptive approximation $\quad c=-0.12+0.74 i$

Adaptive approximation $\quad c=i$ level 3

Adaptive approximation $\quad c=i \quad$ level 4

Adaptive approximation $\quad c=i$ level 5

Adaptive approximation $\quad c=i$ level 6

Adaptive approximation $\quad c=i \quad$ level 7

Adaptive approximation $\quad c=i$ level 8

Adaptive approximation $\quad c=i \quad$ level 9

Adaptive approximation $\quad c=i$ level 10

Adaptive approximation $\quad c=i$ level 11

Adaptive approximation $\quad c=i$ level 12

Adaptive approximation $\quad c=i$ level 13

Adaptive approximation $\quad c=i$ level 14

Adaptive approximation $c=i$

Adaptive approximation $c=i$

Adaptive approximation $\quad c=-0.25+0.74 i \quad$ level 3

Adaptive approximation $\quad c=-0.25+0.74 i \quad$ level 4

Adaptive approximation $\quad c=-0.25+0.74 i \quad$ level 5

Adaptive approximation $\quad c=-0.25+0.74 i \quad$ level 6

Adaptive approximation $\quad c=-0.25+0.74 i \quad$ level 7

Adaptive approximation $\quad c=-0.25+0.74 i \quad$ level 8

Adaptive approximation $\quad c=-0.25+0.74 i \quad$ level 9

Adaptive approximation $\quad c=-0.25+0.74 i$ level 10

Adaptive approximation $\quad c=-0.25+0.74 i$ level 11

Adaptive approximation $\quad c=-0.25+0.74 i \quad$ level 12

Adaptive approximation $c=-0.25+0.74 i \quad$ level 13

Adaptive approximation $\quad c=-0.25+0.74 i$ level 14

Adaptive approximation $c=-0.25+0.74 i$

Adaptive approximation $c=-0.25+0.74 i$

Applications

- Image generation
- Point and box classification
- Fractal dimension of Julia set
- Area of filled Julia set
- Diameter of Julia set

Applications

certified numerical results

- Image generation
large images
smaller images with anti-aliasing
- Point and box classification quadtree traversal + one function evaluation if gray
- Fractal dimension of Julia set
upper bound

$$
\operatorname{dim}_{H}=1+\frac{|c|^{2}}{4 \log 2}+\cdots
$$

- Area of filled Julia set lower and upper bounds

$$
\pi\left(1-\left|p_{1}(c)\right|^{2}-3\left|p_{2}(c)\right|^{2}-5\left|p_{3}(c)\right|^{2}-\cdots\right)
$$

- Diameter of Julia set lower and upper bounds

Area of filled Julia sets after Milnor

Inverse Böttcher map

$$
\begin{aligned}
& \psi: \mathbb{C} \backslash \mathbb{D} \rightarrow \mathbb{C} \backslash K \\
& \psi\left(w^{2}\right)=\psi(w)^{2}+c
\end{aligned}
$$

Laurent series near ∞

$$
\begin{gathered}
\psi(w)=w\left(1+\frac{a_{2}}{w^{2}}+\frac{a_{4}}{w^{4}}+\frac{a_{6}}{w^{6}}+\cdots\right) \\
a_{2}=-\frac{c}{2} \quad a_{2 n}=\frac{1}{2}\left(a_{n}-a_{n}^{2}\right)-\sum_{\substack{2 \leq j<n \\
j \text { even }}} a_{j} a_{2 n-j} \quad a_{2 n+1}=0
\end{gathered}
$$

Gronwall's area theorem

$$
\operatorname{area}(K)=\pi\left(1-\left|a_{2}\right|^{2}-3\left|a_{4}\right|^{2}-5\left|a_{6}\right|^{2}-\cdots\right)
$$

Truncating series gives upper bounds
Quadtree gives both lower and upper bounds

Area of filled Julia sets after Milnor

Figure 45. Upper bounds for the area of the filled Julia set for $f_{c}(z)=z^{2}+c$ in the range $-2 \leq c \leq .25$.

Area of filled Julia set $\quad-1.25 \leq c \leq 0.25$

Area of filled Julia set $\quad-1.25 \leq c \leq 0.25 \quad$ level 19

Area of filled Julia set $\quad-1.25 \leq c \leq 0.25 \quad$ level 19

Area of filled Julia set $-1.25 \leq c \leq 0.25$ level 19

Limitations

- Memory
- Need to explore $\Omega \supseteq[-R, R] \times[-R, R]$

Limitations

- Memory
depth of quadtree and size of cell graph limited by available memory currently spatial resolution $\approx 4 \times 10^{-6}$
cannot reach 20 levels
- Need to explore $\Omega \supseteq[-R, R] \times[-R, R]$
even if region of interest is smaller limited amount of zoom
limitation inherent to using cell mapping because f is transitive on J

Future work higher-degree polynomials

- Escape radius
- Bounding box

Future work higher-degree polynomials

- Escape radius

$$
R=\frac{1+\left|a_{d}\right|+\cdots+\left|a_{0}\right|}{\left|a_{d}\right|}
$$

is an escape radius for $f(z)=a_{d} z^{d}+\cdots+a_{0}$

- Bounding box
needs interval arithmetic with directed rounding

Cubic Julia set $\quad z^{3}+0.38$

Cubic Julia set $\quad z^{3}+0.38$

Cubic Julia set $\quad z^{3}+0.41$

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 0

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 1

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 2

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 3

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 4

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 5

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 6

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 7

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 8

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 9

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 10

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 11

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 12

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 13

Cubic Julia set $\quad z^{3}-3 a^{2}+b \quad$ level 14

Cubic Julia set
 $$
z^{3}-3 a^{2}+b
$$

Cubic Julia set
 ```z```

Future work Newton's method

- Which points converge to which root?
- Points that do not converge form the Julia set
- No escape radius
- Need to find explicit attracting regions around roots?

Future work \quad Newton's method $\quad z^{3}=1$

Julia set panorama

http://monge.visgraf.impa.br/panorama/viewer/index.html? img=../julia-256GP/julia.xml

Images of Julia sets that you can trust

Thanks!

Related work

- M. Braverman and M. Yampolsky. Computability of Julia sets, volume 23 of Algorithms and Computation in Mathematics. Springer-Verlag, 2009.
- M. Dellnitz and A. Hohmann. A subdivision algorithm for the computation of unstable manifolds and global attractors. Numerische Mathematik, 75(3):293-317, 1997.
- C. S. Hsu. Cell-to-cell mapping: A method of global analysis for nonlinear systems. Springer-Verlag, 1987.
- J. Milnor. Dynamics in one complex variable, volume 160 of Annals of Mathematics Studies. Princeton University Press, third edition, 2006.
- R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
- R. Rettinger and K. Weihrauch. The computational complexity of some Julia sets. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 177-185. ACM, 2003.
- D. Saupe. Efficient computation of Julia sets and their fractal dimension. Phys. D, 28(3):358-370, 1987.

Area of filled Julia set $-1.25 \leq c \leq 0.25$ level 19

Interval arithmetic
 $f(z)=z^{2}+c$

$$
(x, y) \mapsto\left(x^{2}-y^{2}+a, 2 x y+b\right)
$$

```
function f(xmin,xmax,ymin,ymax)
    local x2min,x2max=isqr(xmin,xmax)
    local y2min,y2max=isqr(ymin,ymax)
    local xymin,xymax=imul(xmin,xmax,ymin,ymax)
    return x2min-y2max+a,x2max-y2min+a, 2*xymin+b,2*xymax+b
end
```

function imul(xmin, xmax, ymin, ymax)
local mm=xmin*ymin
local mM=xmin*ymax
local Mm=xmax*ymin
local MM=xmax*ymax
local $\mathrm{m}, \mathrm{M}=\mathrm{mm}$, mm
if $m>m M$ then $m=m M$ elseif $M<m M$ then $M=m M$ end
if $m>M m$ then $m=M m$ elseif $M<M m$ then $M=M m$ end
if $m>M M$ then $m=M M$ elseif $M<M M$ then $M=M M$ end
return m, M
end

Interval arithmetic $\quad f(z)=z^{2}+c$

```
\[
(x, y) \mapsto\left(x^{2}-y^{2}+a, 2 x y+b\right)
\]
function f(xmin,xmax,ymin,ymax)
    local x2min,x2max=isqr(xmin,xmax)
    local y2min,y2max=isqr(ymin,ymax)
    local xymin,xymax=imul(xmin,xmax,ymin,ymax)
    return x2min-y2max+a,x2max-y2min+a, 2*xymin+b,2*xymax+b
end
function isqr(xmin,xmax)
    local u=xmin^2
    local v=xmax^2
    if xmin<=0 and 0<=xmax then
        if u<v then return 0,v else return 0,u end
    else
        if u<v then return u,v else return v,u end
    end
end
```


Interval arithmetic
 $$
f(z)=z^{3}+c
$$

$$
(x, y) \mapsto\left(x^{3}-3 x y^{2}+a,-y^{3}+3 x^{2} y+b\right)
$$

```
function f(xmin,xmax,ymin,ymax)
    local x2min,x2max=isqr(xmin,xmax)
    local y2min,y2max=isqr(ymin,ymax)
    local xy2min,xy2max=imul(xmin,xmax,y2min,y2max)
    local x2ymin,x2ymax=imul(x2min,x2max,ymin,ymax)
    local x3min,x3max=icub(xmin,xmax)
    local y3min,y3max=icub(ymin,ymax)
    return x3min-3*xy2max+a, x3max-3*xy2min+a,
        -y3max+3*x2ymin+b, -y3min+3*x2ymax+b
```

end
function icub(xmin, xmax)
return $x \min ^{\wedge} 3, x_{m a x}{ }^{\wedge} 3$
end

