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Abstract. We describe explicitly holomorphic singular foliations on the pro-
jective plane corresponding to natural foliations of Hilbert modular surfaces
associated to the field Q(

√
5). These are concrete models for a very special

class of foliations in the recent birational classification of foliations on projec-
tive surfaces.
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1. Introduction and Statement of Results

Our aim is to give concrete models in the projective plane for the holomorphic
singular foliations which are the natural foliations of Hilbert modular surfaces.

Such foliations are called Hilbert modular foliations and have a distinguished
role in the birational classification of foliations on projective surfaces (cf. [15], [4],
[16]). Recently M. Brunella ([5]) and M. McQuillan ([15]) completed the birational
classification of holomorphic singular foliations showing that rational fibrations and
modular foliations are the unique foliations with negative foliated Kodaira dimen-
sion. Besides the role in the birational classification, Hilbert modular foliations
have some remarkable dynamical properties and also a distinguished place on the
theory of transversally projective foliations.

We recall the definitions. Let N be a square free positive integer, K the totally
real quadratic field Q(

√
N) and OK the ring of integers of K. The two distinct

embeddings of K into R induces an embedding of PSL(2, K) into PSL(2,R) ×
PSL(2,R). If I ⊂ OK is a maximal ideal then ΓI will be the lattice defined by the
following exact sequence:

(1) 0 → ΓI → PSL(2,OK) → PSL(2,OK/I) → 0 .

Denote by H2 := H × H the product of Poincaré upper planes. Then the Hilbert
modular surface Y (N, I) is defined as the minimal desingularization of the com-
pactification of H2/ΓI . When the quotient is made by the full Hilbert modular
group PSL(2,OK) the associated surface is the Hilbert modular surface Y (N).
The Hilbert modular foliations are defined as the singular foliations which are the
extensions of the images of the horizontal and vertical fibrations under the quotient
defining the Hilbert modular surfaces.

In order to motivate the study of this class of foliations, we list in Theorem 1
some properties of modular foliations. By a reduced foliation we mean a foliation
whose singularities are reduced in Seidenberg’s sense, see [4]. For the concepts of
transversally affine and transversally projective foliations we refer to [19], [20] and
references there within.

Theorem 1. Let H be a reduced modular foliation on the projective surface S and
Z the reduced divisor whose support are the invariant algebraic curves of H. Then
H has the following properties:

a. Quasi–minimality: The algebraic invariant curves are rational curves and
every non-algebraic leaf is dense.

b. Hyperbolicity: Except for a finite set, every leaf is hyperbolic and simply–
connected, i.e., biholomorphic to the Poincaré disc.

c. Uniformity: H is transversally projective outside Z and there exists a neigh-
borhood U of Z such that H|U\Z is transversally affine.

d. Sporadicity: If L is the class of the cotangent line bundle T ∗H in Pic(S),
then H is the unique holomorphic singular foliation S whose class for the
cotangent bundle is L ∈ Pic(S).

In the realm of modular surfaces some particular cases are rational surfaces, i.e.,
birational to P2. We will focus on the following three rational Hilbert modular
surfaces Y (5), Y (5, (2)) and Y (5, (

√
5)).

We first obtain plane models for the Hilbert modular foliations of Y (5, (2)). By
a dicritical point we mean a singularity of foliation having infinitely many local
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analytic separatrices. Radial points are dicritical singularities locally given by ω =
xdy − ydx + h.o.t. = 0:

Theorem 2. The Hilbert modular foliations of Y (5, (2)) can be obtained from foli-
ations H5 and H9 of the projective plane by means of one blow up at each of sixteen
distinct points p1, . . . p16 in the plane, with the following properties:

i. H5 and a H9 have degrees 5 and 9, respectively.
ii. H5 has 16 radial points at p1, · · · , p16 and 15 linearizable saddle points; the

quotient of eigenvalues of the saddles is −3+
√

5
2 .

iii. H5 and H9 have the same invariant algebraic curves, a configuration of 15
straight lines for which p1 . . . p10 are triple points, p11 . . . p16 are 5-ple points
and the 15 saddle-points of H5 or H9 are nodes. Moreover, the analytical
type of the singularities of both foliations on the singular points is the same,
except for 6 points p11, . . . , p16 which for H9 are analytically equivalent to
dicritical points with algebraic multiplicity 3 and Milnor number 11.

iv. H5 and H9 are invariant by the irreducible action of A5, the Icosahedral
group, on the projective plane.

v. there exists an involutive Cremonian transformation of degree 5 which
transforms H5 into H9.

Moreover, there exist affine coordinates on the plane, for which one of the in-
variant lines is the line at infinity, such that H5 is given by the vector field:

x′ = (x2 − 1)(x2 − (
√

5− 2)2)(x +
√

5y)

y′ = (y2 − 1)(y2 − (
√

5− 2)2)(y +
√

5x)

while H9 is given by:

x′ = (x2 − 1)(x2 − (
√

5− 2)2)[(−40 + 18
√

5)y + (−10
√

5 + 20)y3+

4
√

5y5 + (8
√

5− 18)x + (−30 + 12
√

5)xy2 + 20xy4+

+(4− 2
√

5)x2y + 6
√

5x2y3 + (10− 4
√

5)x3 + 2x3y2]

y′ = (y2 − 1)(y2 − (
√

5− 2)2)[(−40 + 18
√

5)x + (−10
√

5 + 20)x3+

+4
√

5x5 + (8
√

5− 18)y + (−30 + 12
√

5)x2y + 20x4y+

(4− 2
√

5)xy2 + 6
√

5x3y2 + (10− 4
√

5)y3 + 2x2y3]

Remarks on Theorem 2: In Figure 1 (below) there are four directions determined by
parallel lines, which correspond to 4 dicritical singularities of H5 and H9 at infinity.
Also we remark that the 15 invariant lines determine a simplicial decomposition of
P2
R such that each triangle has one saddle and two dicritical singularities as vertices.

The qualitative behavior of both H5 and H9 is topologically conjugated to the one
presented in Figure 2 below.

The degree five Cremonian involution sending H5 to H9 in Theorem 2 becomes,
after blowing-up the 6 points p11, . . . p16, an automorphism of a rational surface
corresponding to the natural involution of Y (5, (2)). Searching for models in the
plane where the involution of Y (5, (2)) corresponds to minimal automorphism, as
defined in [3], we obtain other models in the plane:

Theorem 3. The pair of Hilbert modular foliations of Y (5, (2)) are birationally
equivalent to a pair of foliations F , G of the projective plane, where both F and G
have degree 7. There exists an involutive automorphism φ of P2 such that φ∗(F) = G
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Figure 1. Real picture of the arrangement of lines invariant by H5 and H9.
The line at infinity is also invariant, besides the 14 lines in the configuration.

Figure 2. The qualitative behavior of H5 and H9 on each cell.

and φ∗(G) = F . Moreover, the algebraic invariant curves are 7 straight lines and 4
conics.

We remark that by the same methods used in the proof of Theorem 3 we can
produce another model for the modular foliations of Y (5, (2)) in the plane for which
both have degree 10.

Our next result is a detailed description of the Hilbert modular foliations of Y (5),
which is regarded as the desingularized quotient P2/A5 (cf. [13]). By a minimal
reduction of singularities of a foliation we mean a sequence of blow ups in which
blow ups at reduced singularities or at regular points of foliations are not allowed.

Theorem 4. The modular foliations of Y (5) are obtained by means of the minimal
reduction of singularities of the foliations H2 and H3 of the projective plane, with
the following properties:

i. the degrees of H2 and H3 are 2 and 3, respectively, and there are affine
coordinates (x, y) where they are induced respectively by:

x′ = y + 32x− 36x2

y′ = 80y − 60xy − 80x2
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and

x′ = 4y − 3xy − 4x2

y′ = −5y2 + 80xy − 240x3.

ii. The tangency set of H2 and H3 is an invariant curve composed by the line
at infinity and the rational quintic given in the coordinates (x, y) by

Q : −1728x5 + 720x3y − 80xy2 + 64(5x2 − y)2 + y3 = 0.

iii. The non-reduced singularities of H2 and H3 are at the cuspidal points of Q,
namely: (0, 0), ( 32

27 , 1024
81 ) and the point at infinity (0, 0) = (w.s) = (x

y , 1
y ),

which are dicritical singularities for both foliations.
iv. The sequence of blow ups σ : Y (5) → P2 producing the reduction of singu-

larities of foliations is composed by eleven blow ups: four blow ups at (0, 0)
and infinitely near points; four at the point at infinity (0, 0) = (w, s) and
infinitely near points; three at ( 32

27 , 1024
81 ) and infinitely near points.

v. The singularities of both foliations at (1, 4) = (x, y) are reduced saddles
with quotient of eigenvalues equal to −3+

√
5

2 .

In Figure 3 we represent (qualitatively) the cuspidal quintic curve.

Figure 3. A cuspidal quintic curve and the line at infinity are the tangency
set of H2 and H3

Next, we consider the Hilbert modular foliations on Y (5, (
√

5)). Through a
similar analysis to the one made in the proof of Theorem 3 we obtain:

Theorem 5. The pair of Hilbert modular foliations of Y (5, (
√

5)) are birationally
equivalent to a pair of foliations F , G of the projective plane, where both F and G
have degree 9. There exists an involutive automorphism φ of P2 such that φ∗(F) = G
and φ∗(G) = F . Moreover, the algebraic invariant curves are 5 straight lines and 7
conics.

Again, by the same methods, we can give a second model in the plane for the
modular foliations of Y (5, (

√
5)) where the degree is 12 for both modular foliations

and the algebraic invariant curves are 1 straight line and 12 conics.

Acknowledgments: The authors thank Karl Otto Stohr, for calling their atten-
tion to the work of Hirzebruch on Hilbert Modular Surfaces, and the interest of the
participants of the Seminar of Complex Dynamics at IMPA. They also thank E.
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Ghys for his interest. The first author heartly thanks the attention of S. Cantat,
D. Cerveau, C. Favre, S. Lamy, J.-M. Lion, L. Meersseman and F. Touzet.
Remark: After this paper was completed and being submitted, the authors found a

paper by R. Kobayashi and I. Naruki, Math. Annalen 279, 485-500 (1988) where they

describe the 1-forms inducing H5 and H9 in other coordinate system. Their interest is

in the uniformization theory of surfaces and they give not a detailed description of the

pair of foliations. So we think that our description, by completely different methods,

give new information on the foliations of Y (5, (2)). They also describe explicitely the

irreducible 2-web produced by the the 2-fold ramified covering p : Y (5, (
√

5)) → P2, which

is complementary to our description of the foliations of Y (5, (
√

5)).

2. Preliminaries

2.1. Hilbert Modular Surfaces and Foliations. After the definition of modu-
lar surfaces in the Introduction, let us say a few words about the compactification
H2/ΓI of H2/ΓI . The two embeddings of K into the reals induce an embedding of
P1

K into P1
R×P1

R ⊂ P1
C×P1

C. PSL(2,R) acts on P1
C by fractional linear transforma-

tions, thus so does PSL(2,K) on P1
K .

The action of the lattice ΓI ⊂ PSL(2,K) ⊂ PSL(2,R) × PSL(2,R) preserves
P1

K ⊂ P1
C × P1

C. The orbits of P1
K under the action of ΓI are called cusps.

The compactification of H2/ΓI is then obtained by adding the cusps, i.e.,

H2/ΓI = H2/ΓI

⋃
P1

K/ΓI .

There exists a bijection between the cusps of Y (N) and the ideal class group of
K (see proposition 1.1 in [8]). In the particular case where the class number of K
is one, equivalently OK is factorial, the cusps of Y (N, I) are parametrized by the
finite projective space P1

F, where F is the finite field OK/I. From (1) we see that
the group PSL(2, OK

I ) acts on Y (N, I). Of course this action must preserve the
cusps and when the cusps of Y (N, I) are parametrized by P1

F the induced action on
P1
F is the usual action. The modular forms induce a structure of projective, resp.

quasi-projective, varieties on H2/ΓI , resp. H2/ΓI . For more details the reader can
consult the two first chapters of [8].

As already defined, the Hilbert modular foliations are the singular foliations
which are extensions of the images of the horizontal and vertical fibrations under
the quotient defining the Hilbert modular surfaces. The algebraic curves introduced
in the compactification and desingularization defining the modular surfaces are
invariants for both modular foliations.

Along this section we prove Theorem 1, except for the proof of the sporadicity
property of modular foliations. This one is postponed to Section 2.2.4, since it
depends on notions from the birational classification of foliations which we will
recall on 2.2.

2.1.1. Quasi-minimality. Let Γ ⊂ PSL(2,R)2 be the lattice defining the Hilbert
modular surface. If F is the horizontal foliation of H×H and

ρ : H×H→ Y ∼= H2/Γ

is the quotient map, then the density of leaves of ρ∗F on Y is equivalent to the
density of π(Γ) on PSL(2,R), where π : PSL(2,R)2 → PSL(2,R) is the projection
on the second factor.
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In the case Γ is the image of PSL(2,OK) on PSL(2,R)2 under the pair of
embeddings of the totally real quadratic field K then π(Γ) contains the elements

Aµ =
[
1 µ
0 1

]
and Bµ =

[
1 0
µ 1

]
,

for arbitrary µ ∈ OK . Let G denote the closure of PSL(2,OK) in PSL(2,R). Since
OK is dense in R the Lie algebra of G contains the elements

X =
[
0 1
0 0

]
and Y =

[
0 0
1 0

]
,

Since [X, Y ] is linearly independent of X and Y the Lie algebra of G has dimen-
sion 3 and being PSL(2,R) a connected 3-dimensional Lie group we conclude that
PSL(2,OK) = PSL(2,R).

The general case follows from Margulis-Selberg’s Theorem, which asserts that
any lattice Γ ⊂ PSL(2,R)2 is commensurable with ΓK for some totally real qua-
dratic field K, i.e., there exists g ∈ PSL(2,R)2 such that gΓg−1 ∩ ΓK is of finite
index in both ΓK and gΓg−1.

2.1.2. Hyperbolicity. Keeping the notation of the previous section we are going
to prove that all the leaves of ρ∗F are hyperbolic and, except for a finite number
of exceptions, simply–connected.

The hyperbolicity is obvious since the leaves of ρ∗F are presented as quotient
of the upper half–plane H. To conclude that the generic leaf is simply–connected,
observe that the non-trivial elements in the fundamental group of a leaf is in cor-
respondence with fixed points of the action of some element of π(Γ) on H. Being
Γ discrete we can see that the fixed points are countable and since to any element
of π(Γ) corresponds at most two fixed points, thus we conclude that the generic
leave is simply-connected. To conclude observe that every non-simply connected
leave must pass through a quotient singularity and the finitness of the number of
non-simply connected leaves follows.

2.1.3. Uniformity. Since the foliation ρ∗F is described as a quotient of H2 by Γ
we can easily see that every element of the pseudogroup of holonomy of ρ∗F is
conjugated to a projective transformation, given by the action of PSL(2,OK) on
the second factor of H2; thus ρ∗F is transversely projective on the complement of
Z, in the sense of [19], [20].

In order to understand the local structure of ρ∗F in neighborhood of infinity, i.e.
in the neighborhood of the cusps, one has to analyze the structure of the isotropy
group of the cusp.

Again, Margulis-Selberg’s Theorem allows us to reduce to the case where Γ =
PSL(2,OK) for some quadratic field K. If σ is a cusp of Γ then the isotropy group
of σ under the action of Γ is conjugated, inside Γ, to a group of type G(M, V ),

G(M, V ) =
{[

ε µ
0 1

]
∈ PSL(2,K)|ε ∈ V, µ ∈ M

}
= M o V ,

where M ⊂ K is an additive subgroup of K which has rank 2 as a free abelian
group and V ⊂ U+

K is a subgroup of the positive units such that for every ε ∈ V
we have εM = M . Therefore the isotropy group of the cusp is an affine group and
on neighborhood of infinity of the Y , ρ∗F is transversally affine. Observe also that
the orbits are not locally dense.
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2.2. Birational Geometry of Hilbert Modular Foliations.

2.2.1. Kodaira Dimension of Foliations. In this section we recall the concepts
of the birational theory of holomorphic foliations on projective surfaces that we will
use along the paper. The references for this section are [15], [4] and [16].

A holomorphic foliation F on a compact complex surface S is given by an open
covering {Ui} and holomorphic vector fields Xi over each Ui such that whenever
the intersection of Ui and Uj is non–empty there exists an invertible holomorphic
function gij satisfying Xi = gijXj . The collection {(gij)−1} defines a holomorphic
line–bundle, called the tangent bundle of F and denoted TF . The dual of TF is the
cotangent bundle T ∗F .

Similarly, a holomorphic foliation F on a compact complex surface S can be
given by an open covering {Ui} and holomorphic 1–forms ωi over each Ui such
that whenever the intersection of Ui and Uj is non–empty there exists an invertible
holomorphic function hij satisfying ωi = hijωj . The collection {(hij)} defines a
holomorphic line–bundle, called the normal bundle of F and denoted NF . The
dual of NF is the conormal bundle N∗

F .
Along all the paper, a foliation means a holomorphic foliation with a finite num-

ber of singularities of a smooth projective surface . Observe that there is no loss
of generality since every codimension one component of the singular set can be
eliminated by factoring out its defining equations from the local vector fields, or
one forms, inducing the foliations.

A reduced foliation F is a foliation such that every singularity p is reduced in
Seidenberg’s sense, i.e., for every vector field X generating F and every singular
point p of X, the eigenvalues of the linear part of X are not both zero and their
quotient, when defined, is not a positive rational number. For a reduced foliation
F , T ∗F is called the foliated canonical bundle and is denoted by KF .

We define the Kodaira dimension of a foliation F as follows.

Definition 1. If F is a reduced holomorphic foliation on a projective surface S
then

kod(F) := lim sup
n→∞

log h0(S, (KF )⊗n)
log n

.

When F is not reduced we set kod(F) as kod(F), where F is any reduced foliation
birationally equivalent to F

In principle it is necessary to prove that the above definition is well-posed. In
fact this is done in [4, 16, 15].

The birational classification of foliations is built on the interplay of two bira-
tional invariants of foliations, the above defined foliated Kodaira dimension and
the numerical Kodaira dimension. This concept is based on Miyaoka’s semipositiv-
ity theorem and the Zariski decomposition of pseudo-effective Z-divisors.

Miyaoka’s semipositivity theorem ([15], [4]) states that T ∗F is a pseudo-effective
line bundle (divisor) for any foliation on any projective surface, except for pencils
of rational curves (i.e. foliations which after blow ups are rational fibrations).
By pseudo-effective we mean a divisor with non-negative intersection with any nef
divisor. By nef we mean a divisor whose intersection with any curve is non-negative.

The Zariski decomposition of a pseudo-effective divisor D (or of the associated
holomorphic line bundle) is the numerical decomposition of D as P +N , where N is
a Q+-divisor whose support (possibly empty) is contractible to a normal singularity
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of surface, P is a nef Q-divisor and P · Ni = 0 for any irreducible component on
the support of N .

Definition 2. Let F be a reduced foliation on the complex surface S. If T ∗F is not
pseudo-effective then the numerical Kodaira dimension of F , denoted by ν(F), is
−∞. Otherwise, if T ∗F = P + N is the Zariski’s decomposition then we set

ν(F) =





0 when P is numerically equivalent to zero
1 when P 2 = 0 but P is not numerically equivalent to zero
2 when P 2 > 0

When F is not reduced we set ν(F) := ν(F), where F is any reduced foliation
birationally equivalent to F .

Again, in order to verify the well-posedness of the above definition the reader
should consult [4, 15].

A foliation F of the surface S is relatively minimal if F is reduced and the
contraction of any −1-curve induces a non-reduced foliation on the blow-down of
S. If F is relatively minimal foliation, it is proven in [15] (see also [4]) that the
support of the divisor N of the Zariski decomposition of T ∗F is composed by chains
of F-invariant rational curves of self-intersection lower than −1. The chain starts
with a curve C(1) with just one singularity of the foliation and, if has more than
one component, continues with curves C(k) with 2 singularities. Every singularity
in the support of the negative part admit a local holomorphic first integral.

2.2.2. Birational Characterization of Hilbert Modular Foliations. Both no-
tions of Kodaira dimension and numerical dimension can be extended to any line
bundle (or divisor) D, cf. [18] and there is a general inequality kod(D) ≤ ν(D).
When kod(D) = ν(D) we usually say that abundance holds for D.

The classification result of [15] (see also [5]) asserts that for any foliation F of
projective surface kod(F) = ν(F), except uniquely for the modular foliations, which
are birationally characterized by kod(F) = −∞ and ν(F) = 1. In other terms F is
a modular foliation if, and only if, abundance does not hold for KF .

We remark that our work gives also concrete examples of (nef) divisor D with
kod(D) = −∞ and ν(D) = 1, for which D ·KM > 0 (a class of examples that as far
we know do not appear in the literature [18], [2]). The examples consists in taking
D := KH5 or D := KH9 for the modular foliations of Theorem 2 (details are given
in Section 3).

2.2.3. Birational Modifications and Numerical Data. In order to be able to
translate the information from the birational characterization of modular foliations
into numerical data about singularities and degrees of their projective models, we
need to understand the effect of sequences of blowing ups on foliations of the plane.

Definition 3. Let F be a holomorphic foliation on a surface S and p ∈ sing(F).
Let ω be a holomorphic 1-form generating F on a neighborhood of p and π : S → S
the blow-up at p.

a. The order of the first non-zero jet of ω will be denoted by m(p,F). The
non-negative integer m(p,F) is called the algebraic multiplicity of p.

b. The vanishing order of π∗ω over the exceptional divisor will be denoted by
l(p,F).
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The above defined indices are related as follows: when the exceptional divisor
E = π−1(p) is not invariant by π∗F then l(p,F) = m(p,F)+1; otherwise l(p,F) =
m(p,F). More generally when the exceptional divisor E = π−1(p) is not invariant
for the transformed foliation, then

l(p,F) = tang(E, σ∗(F)) + 2 ,

where tang(E, π∗(F)) is the number of tangencies points, counted with multiplici-
ties, and when E = π−1(p) is π∗(F)-invariant then

l(p,F) = Z(E,F)− 1 ,

where Z(E,F) denotes the sum of Poincaré-Hopf indices along E of local holomor-
phic vector fields inducing F .

If σ is a composition of blow ups σi then cotangent line bundles of the trans-
formed foliation F on M and of F on M are related by

(2) T ∗F = σ∗(T ∗F )⊗OM (−
∑

i

(l(pi,F)− 1) · Ei),

where σ denotes the composition of blow ups σi and Ei = σ−1(pi). Here we consider
the total transforms, i.e., E2

i = −1 and Ei · Ej = 0 if i 6= j.
The conormal bundle N∗

F of F on a surface M can be determined by means of
adjunction formula

T ∗F ⊗N∗
F = KM ,

where KM is the canonical divisor of M . From this relation, the previous isomor-
phism and the formula:

KM = σ∗(KM )⊗OM (
∑

i

Ei),

we obtain for the normal bundle:

NF = σ∗(NF )⊗OM (−
∑

i

l(pi,H) · Ei).

On P2, the degree d(F) of a foliation F is defined as the number of tangencies
between H and a generic straight line L, counted with multiplicities. There is the
following isomorphism:

T ∗F = OP2(d(H)− 1))
and from KP2 = O(−3) we obtain in the plane NF = O(d(F) + 2)).

From the previous remarks and formulae, we can deduce the behavior of the
cotangent and normal bundles of foliations of the plane under any finite sequence
of blowing ups. Since birational transformations are composition of blowing ups and
blowing downs, it is natural that along the paper an exceptional curve E = σ−1(p)
arises as strict transform C of some rational curve C ⊂ P2 under blowing ups σ′, i.e.
C = E. Also the foliation σ∗(F) will be in some cases regarded as the transformed
foliation by σ′ of another foliation G in the plane, i.e σ∗(F) = G = (σ′)∗(G). In
such situation, it will be necessary for computing

l(p,F) = tang(E, σ∗(F)) + 2 = tang(C,G) + 2,

to know the following relation:

tang(C,G) = tang(C,G)− νp(C) · (νp(C) + l(p,G)− 1),

where νp(C) is the algebraic multiplicity of the curve.
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2.2.4. Sporadicity of Modular Foliations. In our approach, after determining
the numerical data of the foliations in the plane (i.e. degrees and multiplicities
of singularities) we explicitly determine the polynomial vector fields inducing the
modular foliations. What justifies the uniqueness of the foliations submitted to
the numerical data is the sporadicity property of modular foliations (cf. [16] and
[15]). For reader’s convenience, we sketch below the proof of sporadicity, for further
details see [16]. This will complete the proof of Theorem 1.

Let M be a projective surface and denote by Fol(M,L) the set of foliations of M
with foliated canonical bundle isomorphic to L, i.e., Fol(M,L) = PH0(M, TM⊗L) .
We call a foliation F sporadic if Fol(M,L) = {F}. We assert that if F is a reduced
modular foliation, then F is sporadic.

In fact, suppose by absurd that Fol(M,T∗F ) 6= {F} and take G 6= F , G ∈
Fol(M, T∗F ). Contractions of local holomorphic vector fields inducing F and lo-
cal 1-forms inducing G produce functions vanishing along a tangency curve, which
is an algebraic curve (possibly with non-reduced components), denoted by DFG . In
equivalent terms we have the isomorphism of line bundles O(−DFG) = TF ⊗ N∗

G .
Thus

T ∗F ⊗ T ∗G = O(DFG)⊗KM ,

i.e., T ∗⊗2
F = O(DFG)⊗KM . As a consequence, K⊗2

M is not effective: otherwise T ∗⊗4
F

is effective, contradicting kod(F) = −∞. By other side, M has no (non-trivial)
global holomorphic 1-form (the existence would imply a global section either of
T ∗F or of the cotangent of the companion modular foliation). Now we can apply
Castelnuovo’s criterion of rationality of surfaces, concluding that M is rational.
Now we arrive at a contradiction using the following fact from [18] (a proof is
also given in [16]): if D is a pseudo-effective divisor of rational surface M , then
KM ⊗O(D) is pseudo-effective if and only if kod(KM⊗O(D)) ≥ 0. Thus the proof
is completed.

3. Projective models for Modular Foliations of Y (5, (2))

On this section we first recall Hirzebruch’s description of Y (5, (2)) as the blown
up of P2 at points in P2

R ⊂ P2 determined by the vertices and centers of faces of an
Icosahedron, cf. [10]. After this, we determine the modular foliations in the plane,
using the concepts of Section 2.

Next we express the natural involution of the modular surface as a Cremona
transformation changing one foliation into the other. We finish the section proving
the existence of other models in the plane where the involution is expressed as an
automorphism. In particular for some plane models, the modular foliations can
have the same degree.

3.1. Y (5, (2)) as Klein’s Icosahedral Surface. Along this section we freely use
material from Hirzebruch’s paper [10] in order to describe the analytic isomorphism
between Y (5, (2)) and the blown up projective plane.

Some fundamental facts from [10] are: i): H2/Γ2 is a smooth complex open
surface; ii): its compactification H2/Γ2 is a projective singular surface, obtained
by adding 5 cusps.

The induced action of SL2(O)/Γ2 on H2/Γ2 permutes cusps, and for this reason
the cusps have the same analytical structure. The minimal resolution of singularities



HILBERT MODULAR FOLIATIONS 12

of each cusp introduces a cycle composed by three rational curves of Y (5, (2)) with
self-intersection number −3.

The diagonal {z1 = z2} of H2 becomes a smooth rational curve Ĉ of H2/Γ2,
passing through exactly 3 among the 5 cusps (remark that Ĉ minus three points is
hyperbolic). Let us denote by C the strict transform of Ĉ in Y (5, (2)). There are
10 pairwise disjoint curves (including C itself) arising from C by the action induced
by SL2(O)/Γ2, which we call for short ”diagonals” on Y (5(2)). Each one of these
ten diagonals has self-intersection number −1 in Y (5, (2)). If we label the cusps
by ci, i = 0, . . . 4, then each ”diagonal” can be identified as Cij (= Cji), where i, j
refer the pair ci, cj of cusps that do not belong to Cij . Denote the pairwise disjoint
cycles introduced by elimination of the cusps ci by Ai ∪Bi ∪Ci. The intersections
of the smooth rational curves Cij , Ai, Bi, Ci are:

a. Ai ·Bi = Ai · Ci = Bi · Ci = 1 and A2
i = B2

i = C2
i = −3, for i = 0, . . . 4;

b. Cij are pairwise disjoint with C2
ij = −1;

c. each curve Ai, Bi, Ci intersects 2 curves among Cij and each Cij passes by
3 components of (three) distinct cycles, as showed in the next Figure 4:

C

C

C

Cm-1,m+1 m-2,m+2

m+1,m-2

m-1,m+2m-1,m-2C

m+1,m+2
C

Am

B Cm m

Figure 4. Intersections between diagonals Cij and cycles, with integers
taken modulo 5.

We also refer the original paper for the computation of the Euler characteristic,
which verifies: e(Y (5, (2)) = 19. The main fact is:

Theorem 6 (Hirzebruch). Up to analytic isomorphism Y (5, (2)) is the unique
smooth projective surface with Euler number 19 and having a configuration of 25
rational curves with intersections described in a), b), c) and Figure 4.

Now we recall Hirzebruch’s description of how to obtain such a configuration
of rational curves, as in items a, b, c and Figure 4, by means of 16 blow ups of
the projective plane. Consider an icosahedron I in R3 (Figure 5) and denote by
o1, . . . o20 the points in R3 corresponding to the centers of the 20 faces of I. These
points can be seen as the vertices of a dual Dodecahedron D. Also denote by
v21, . . . v32 the points in R3 corresponding to the 12 vertices of I. Now identify
antipodal points among the points o1, . . . v32. Denote the 16 points obtained in P2

R
by o1, . . . o10 and v11, . . . v16. The 30 edges of I determine 15 straight lines in P2

R,



HILBERT MODULAR FOLIATIONS 13

v

v

13

14

15

12v

vv11

o

o

o

o o

o

1

2

3 4

5

6
o

8

9o

o
7

o
10

Figure 5. Vertices and centers of faces os an icosahedron

points intersection of lines
v11 LC0 · LB1 · LB2 · LC3 · LA4

v12 LA0 · LA1 · LA2 · LA3 · LA4

v13 LA0 · LC1 · LB2 · LB3 · LC4

v14 LB0 · LB1 · LC2 · LA3 · LC4

v15 LC0 · LA1 · LC2 · LB3 · LB4

v16 LB0 · LC1 · LA2 · LC3 · LB4

points intersection of lines points intersection of lines
o1 LA0 · LC2 · LC3 o2 LC1 · LC2 · LA4

o3 LB0 · LB3 · LA4 o4 LB0 · LA1 · LB2

o5 LA1 · LC3 · LC4 o6 LB2 · LA3 · LB4

o7 LC0 · LA2 · LC4 o8 LB1 · LA2 · LB3

o9 LA0 · LB1 · LB4 o10 LC0 · LC1 · LA3

denoted LAi , LBi , LCi , where i = 0, . . . 4:

LA0 := v12v13; LC0 := v11v15, LB0 := v14v16,

LB2 := v11v13; LA2 := v12v16, LC2 := v14v15,

LA1 := v12v15; LC1 := v13v16, LB1 := v11v14,

LB4 := v15v16; LA4 := v11v12, LC4 := v13v14,

LC3 := v11v16; LB3 := v13v15, LA3 := v12v14.

Since 5 edges of I intersect at each vertex of I, then 5 lines among the 15
lines LAi , LBi , LCi pass by each point vi, i = 11, . . . 16. Moreover, if 3 mutually
orthogonal edges of I ⊂ R3 are prolonged they intersect at the center of a face
of I; so we conclude that for each point oi pass among 3 of the 15 lines. These
intersections are given in Tables above (we give the intersections in all detais for
further use along the paper).

We refer to this configuration of fifteen lines LAi , LBi and LCi as the Icosahedral
configuration of lines, which is represented in the next Figure 6.

Consider now the inclusion P2
R ⊂ P2 and the 15 complex projective lines deter-

mined by the Icosahedral configuration. Consider the complex surface M obtained
by blow up of P2 at the 16 points o1 . . . o10, v11, . . . v16. This complex surface M
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Figure 6. The Icosahedral configuration of lines

is the Klein’s icosahedral surface. Since one blow up increase by one the Euler
number, we have e(M) = e(P2) + 16 = 19.

Next, consider the strict transforms in M of the complex lines, denoted LAi ,
LBi , LCi . Since each complex line received 4 blow ups, we obtain in M :

LAi

2
= LBi

2
= LCi

2
= −3.

Also LAi ∩ LBi ∩ LCi = 1 for i = 0, . . . 4. Denote now by Cij the exceptional lines
Ek = σ−1(ok), for k = 1, . . . , 10, if ok does not belong to lines in the icosahedral
configuration indexed by i or j. The reader can check that the 25 curves LAi , LBi ,
LCi , Cij have the intersection properties described in items a, b, c and Figure 4.
Also we can check that LAi ∪ LBi ∪ LCi are five disjoint cycles in M .

3.2. Numerical Data of the Foliations.

Proposition 1. Let F ′ and G′ be the modular foliations in the plane producing the
modular foliations F and G of Y (5, (2)) under the 16 blow ups σ : Y (5, (2)) → P2

defining Y (5, (2) as Klein’s icosahedral surface. Then F ′ and G′ have the following
properties:

(1) The degree of F ′ is 5 and the degree of G′ is 9;
(2) For every i ∈ {1, . . . , 10}, the algebraic multiplicities are m(oi,F ′) =

m(oi,G′) = 1;
(3) For every i ∈ {11, . . . , 16}, m(vi,F ′) = 1 and m(vi,G′) = 3;
(4) The oi are radial singularities for F ′ and G′;
(5) The vi are dicritical singularities eliminable by one blow-up for both F ′

and G′; for F ′ the vi have Milnor number 1 while for G′ they have Milnor
number 11.

Proof : The singularities of F and G at the corners of cycles Ai∪Bi∪Ci ⊂ Y (5, (2))
are not affected by the blowing downs producing P2, see Figure 4. Such singularities
at corners are reduced, with Milnor number one. Plugging in A2

i = B2
i = C2

i = −3
in Camacho-Sad’s formula the quotient of eigenvalues of the singularities of F and
G is determined and turns out to be equal to λ = −3±√5

2 . These singularities sum
15 reduced singularities, for both F ′ and G′, with the same quotient of eigenvalues.
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The 16 blow downs transforming M = Y (5, (2)) into P2 include the blowing
downs of 10 ”diagonals” Cij . Since Cij are completely transverse to both F and G,
cf. Figure 4, the transformed foliations F ′ and G′ in the plane have radial points
at oi, with m(oi,F ′) = m(oi,G′) = 1 for i = 1 . . . 10.

The points v11 . . . v16 are also obtained from the blow down of extra (−1)-curves
which are not F neither G invariant and that do not pass through the corners of
the cycles in Y (5, (2)), cf. Figure 4. Thus vi (i = 11, . . . 16) are dicritical points for
both F ′ and G′, with the extra property that the transformed foliations have no
singularities along σ−1

i (vi).
The automorphism group of Y (5, (2)) permutes the cycles resolving the cusps,

therefore:

m(v11,F ′) = . . . = m(v16,F ′) and m(v11,G′) = . . . = m(v16,G′).
Denoting σ := σ1 ◦ . . . ◦ σ16 the blow ups producing Y (5, (2)) from P2, we have,cf.
(2), the isomorphisms:

T ∗F = σ∗OP2(d(F ′)− 1)⊗OM (−
10∑

i=1

Ei −
16∑

i=11

m(vi,F ′)Ei),

T ∗G = σ∗OP2(d(G′)− 1)⊗OM (−
10∑

i=1

Ei −
16∑

i=11

m(vi,G′)Ei)

where Ei = σ−1(oi) for i = 1 . . . 10 and Ei = σ−1(vi) for i = 11 . . . 16. Remark
that the 15 reduced singularities are not affected.

The rational invariant curves for F or G are the cycles, so the N -part for T ∗F and
T ∗G is empty, cf. Section 2. Therefore since the numerical Kodaira dimension is one
for modular foliations we have T ∗F · T ∗F = 0 and T ∗G · T ∗G = 0, which can be written
as:

(3) (d(F ′)− 1)2 = 10 +
16∑

i=11

m(vi,F ′)2 = 10 + 6 ·m(F ′)2

and

(4) (d(G′)− 1)2 = 10 +
16∑

i=11

m(vi,G′)2 = 10 + 6 ·m(G′)2,

from which we have d(F ′) ≥ 5 and d(G′) ≥ 5.
The tangency locus of F and G on M = Y (5, (2)) is the reduced (i.e. free of

multiple components) curve given by the union of the five cycles of M = Y (5, (2)),
cf. [4], [15].

We can write,

OM (
4∑

i=0

Ai + Bi + Ci) = σ∗OP2(15)⊗O(−
10∑

i=1

3Ei −
16∑

i=11

5Ei),

since oi are triple points and vi are 5-uple point in the arrangement of 15 lines.
Since the tangency locus is described by a section of T ∗F ⊗NG , cf. section 2,

T ∗F ⊗NG = σ∗OP2(15)⊗O(−
10∑

i=1

3Ei −
16∑

i=11

5Ei) .
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Expanding the left hand side of the equation above in terms of the generators
σ∗OP2(1), E1, . . . , E16 of Pic(M) we deduce that d(F ′) + d(G′) = 14 and

m(vi,F ′) + m(vi,G′) = 4, ∀i = 11, . . . 16.

Since d(F ′), d(G′) ≥ 5, the unique possible positive solutions supposing d(F ′) ≤
d(G′) are:

(d(F ′), d(G′)) ∈ {(5, 9), (6, 8), (7, 7)}.
The possibilities (d(F ′), d(G′)) = (6, 8) or (7, 7) are excluded by (3) and (4).

Therefore (d(F ′), d(G′)) = (5, 9) and

m(v11,F ′) = . . . = m(v16,F ′) = 1, and m(v11,G′) = . . . = m(v16,G′) = 3.

To conclude observe that the sum of Milnor numbers for G′ is 92 + 9 + 1 = 91
(Darboux theorem) and that there are 15 reduced saddles and 10 radial points for
G′, thus µ(vi,G′) = 11, ∀i = 11, . . . 16.

Remark 1. We will show in Appendix A that there are Cremona maps transform-
ing the pair of modular foliations with degrees 5 and 9 given in this Proposition 1
into pairs of modular foliations with degrees (6, 8) and also (7, 7). But either the
Cremona transformations produce invariant conics or the transformed foliations
have singularities no longer eliminable by just one blow up.

3.3. Determining the Vector Fields. Taking in consideration Proposition 1, we
denote by H5 and H9, respectively, the modular foliations of the plane of degree 5
and of degree 9. In order to explicitly determine polynomial vector fields inducing
the foliations H5 and H9 we will first locate its dicritical singularities in the plane.
These are the points o1, . . . o10, v11 . . . v16 of Proposition 1. In order to construct a
plane model for this arrangement we follow [6] and take the coordinates in R3 of
the 12 vertices of an Icosahedron I (whose edge is 2):

(±1, 0,±τ), (0,±τ,±1), (±τ,±1, 0),

where τ = 1−√5
2 is the golden ratio (recall the basic equation τ2 = τ + 1). The

coordinates of the vertices of the dual Dodecahedron D (with edge 2τ−1) are:

(0,±τ−1,±τ), (±τ, 0,±τ−1), (±τ−1,±τ, 0), (±1,±1,±1).

In the projectivization of R3 to P2
R, we determine:

o1 = (0 : τ−1, τ) o2 = (−1 : 1 : 1) o3 = (τ−1 : −τ : 0)
o4 = (τ−1 : τ : 0) o5 = (1 : 1 : 1) o6 = (1 : 1 : −1)
o7 = (τ : 0 : τ−1) o8 = (1 : −1 : 1) o9 = (0 : −τ−1 : τ)
o10 = (−τ : 0 : τ−1)

and from the vertices of I the following points in P2
R:

v11 = (−1 : 0 : τ) v12 = (0 : τ : −1) v13 = (0 : τ : 1)
v14 = (−τ : 1 : 0) v15 = (1 : 0 : τ) v16 = (τ : 1 : 0)

Let us determine convenient affine coordinates for the singularities of H5 and
H9. Take affine coordinates (x, y) := (X : Y : 1), for which the line LC0 := v11v15

in the Icosahedral configuration becomes the line at infinity.
So o3, o4, v14, v16 become points at infinity and this produces four parallel

directions for some of the affine lines of the icosahedral configuration (Figure 6),
which now is represented in Figure 7.
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Figure 7. The arrangement of lines induced by the icosahedron, with one
line at infinity

From these affine coordinates (x, y), we obtain after a change of affine coordinates
given by

(x, y) :=
(

τ τ + 1
−τ τ + 1

)
· (x, y),

the affine coordinates desired in R2, for which the lines in the arrangement are
those given in Figure 1 at the Introduction: four horizontal lines y = ±1 and
y = ±(2τ + 1) and vertical lines x = ±1 and x = ±(2τ + 1). The coordinates (x, y)
for the singular points are:

o1 = (1, 1) o2 = (1, 2τ + 1) o5 = (2τ + 1, 1)
o6 = (−2τ − 1,−1) o7 = (−2τ − 1, 2τ + 1) o8 = (−1,−2τ − 1)
o9 = (−1,−1) o10 = (−2τ − 1, 2τ + 1) v11 = (−1, 1)
v12 = (−2τ − 1,−2τ − 1) v13 = (2τ + 1, 2τ + 1) v15 = (1,−1),

Table 1. Affine coordinates for the singularities, where τ = 1−√5
2

is the golden ratio.

The strategy now is to associate to the general polynomial vector field X =
X(x, y) of degree 5 a system of linear equations on its coefficients in such a way
that the solutions of this linear systems corresponds to foliations of degree 5 with
o1, . . . , o10 and v11, . . . , v16 as radial singularities.

Let G be a foliation corresponding to a solution of this linear system. Let L
be any line of the configuration. Suppose that L is not G–invariant then since G
has 4 radial singularities on L the order of tangency between G and L is at least
8. This is in contradiction with the fact that G has degree 5. Then any line L
of the configuration must be invariant by G. From this we deduce G is also the
unique solution since the tangency locus of G with any other solution should have
degree 11 and contains the 15 lines of the configuration. Hence to determine H5

we found the unique solution of the linear system supra mentioned obtaining the
result stated in Theorem 2. The computations were carried out with the help of a
computer algebra system.



HILBERT MODULAR FOLIATIONS 18

To determine H9 we can repeat the same strategy, i.e., writing down the linear
system on the coefficients of the generic foliation of degree 9 whose solutions cor-
responds to foliations with radial singularities on o1, . . . , o10 and singularities with
algebraic multiplicity at least 3 on v11, . . . , v16. In order to reduce the number of
indeterminates we use the fact that any solution to our problem must be written
in the form:

(x2 − 1)(x2 − (2τ + 1)2)P5
∂

∂x
+ (y2 − 1)(y2 − (2τ + 1)2)Q5

∂

∂y
,

where P5 and Q5 are generic polynomials of degree 5. This follows our choice
of coordinates (x, y) for which the lines y = ±1, y = ±(2τ + 1) and x = ±1,
x = ±(2τ + 1) are invariant for the foliations.

Solving the linear system on the coefficients of P5 and Q5 lead to the vector field
of degree 9 presented in the statement of Theorem 2.

3.3.1. The Involution of Y (5, (2)) as a Birational Transformation of the Plane. We
will describe the Cremonian transformation T of the plane to itself transforming H5

into H9, which expresses in the plane the automorphism I : Y (5, (2)) → Y (5, (2))
sending one modular foliation to the other. More precisely, we will show that, if
Σ : N → P2 denotes the blow up at the six vertices {v11, . . . v16}, then there exists a
Cremonian transformation T such that Σ◦I ◦Σ−1 = T , where by abuse of notation
I denotes the involution of N sending one modular foliation to the other.

The definition of the involution T as a birational transformation is the fol-
lowing (cf. [17]). Let Ej ⊂ N be the exceptional lines of the blowing ups
of v11, v12, v13, v14, v15, v16. Consider the 6 conics Cp1,...,p5 passing through ex-
actly five vertices pi ∈ {v11, v12, v13, v14, v15, v16}, . Therefore its strict transforms
Cp1,...,p5 ⊂ N are (−1)-curves, because:

C
2

p1,...,p5
= C2

p1,...,p5
− 5 = −1.

The involution I : N → N sends each Cp1,...,p5 to the unique Ej which does
not intersect it. The six curves Cp1,...,p5 can be blow down to six points in a non-
singular surface N ′. Let Ej ⊂ N ′ denote the strict transforms of the exceptional
lines Ej by such blow downs. Since exactly five conics among Cp1,...,p5 passes by
each vertex v1j , then each Ej intersects exactly five curves among Cp1,...,p5 and we
conclude that the self-intersections of Ej in N ′ verify:

Ej
2

= E2
j + 5 = 4;

moreover, since N ′ is a rational surface and e(N ′) = e(N) − 6 = 3, then N ′ = P2

and Ej is a conic.
It is well known that the surface N obtained from P2 by one blow up at each

vertex {v11, . . . v16} is embedded in the projective 3-space as a smooth cubic surface.
A smooth cubic surface in 3-space has exactly 27 straight lines. Among these lines
we will find the strict transforms of the 15 lines in the icosahedral arrangement of
lines. The remaining 12 lines are given by the set Ej , j = 1, . . . 6 and the six curves
Cp1,...,p5 .

In Appendix A we describe T as a degree 5 Cremonian transformation T = T5,
which factorizes as a composition of three quadratic birational transformations of
the plane:

T5 = Q3 ◦Q2 ◦Q1.
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The understanding of this factorization will enable us to give more models of mod-
ular foliations, with degrees 6, 7, 8, starting from H5.

3.4. A Model where the Involution is an Automorphism of the Plane. In
the previous section we described the involution T sending the modular foliation
H5 to H9 as a birational transformation. Now we show that we can obtain models
in the plane for the Hilbert modular foliations of Y (5, (2)) for which the involution
is an automorphism of the plane (in particular the pair of foliations has the same
degree), that is, we want to prove here Theorem 3 stated in the Introduction.

Let Σ : N → P2 be the blowing up at the six indetermination points v11, . . . v16

of T and consider agian the 6 conics Cp1,...,p5 passing through exactly five points
among v11, . . . v16. Thus I = Σ−1 ◦ T ◦ Σ is a non-minimal regular involution in
the sense of Beauville-Bayle [3]. This is due to the fact that Cp1,...,p5 is sent to Ej

and these (−1)-curves are disjoint. Our task now is to obtain from I : N → N a
minimal involution I of P1

C×P1
C and from this an automorphism L of the plane. In

order to this, we firstly describe the map g and the birational map E in the next
Diagram, where Γ is the birational transformation stated in Theorem 3):

I © N
g //

Σ

²²

P1
C × P1

C ª I

E

²²Â
Â
Â

T © P2 Γ //____ P2 ª L

Consider again the lines LAi , LBi and LCi of the Icosahedral configuration, and
denote now by LAi , LBi and LCi the strict transforms by Σ. Remark that these
are (−1)-curves of N . Since the involution has order two and there are 5 curves
LAi in N , it can be proved [10] that the effect of the involution is described as:

I(LA1) = LA1 , I(LA0) = LA2 , I(LA3) = LA4 .

Consider now the blow down of the 5 curves LAi ⊂ N to points denoted rAi ,
i = 1, . . . 5 of the resulting smooth surface W , denoted g : N → W . That is, we
have chosen to blow down one component of each triangle LAi ∪ LBi ∪ LCi of N .
In [10] it is proven that the rational surface W , which is minimal (since its Euler
number is e(M) = 9− 5 = 4), in fact is isomorphic to P1

C × P1
C. We can verify that

the transformed curves by g of LBi and LCi (we keep the same notation for the
curves in N) have self-intersection equal to 2 in W = P1

C × P1
C. For instance, in N

we have LB1

2
= −1, but the intersections in N are:

LB1 · LA0 = LB1 · LA1 = LB1 · LA2 = 1

(as we can check from Tables in Section 3.1) and so by blowing down LA0 , LA1 , LA2 ,
the intersection number of the LB1 in P1

C×P1
C is increased by 3. So the transformed

curves of LBi and LCi are curves of P1
C × P1

C with self-intersection number 2; so
they are curves of bi-degrees (1, 1). Besides the point rAi they intersect along an
extra point q of P1

C × P1
C. The points rAi are dicritical points for the foliations and

the extra-point q is a saddle point for the foliations. See next Figure 8.
In coordinates of P1

C × P1
C, the involution obtained can be written as:

I(x, y) = (
1
y
,
1
x

).
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With τ = (1−√5)
2 , following [10] we put:

rA1 = (1, 1), rA1 = (0, 0), rA2 = (∞,∞),

rA3 = (−τ, τ − 1), rA4 = (−τ + 1, τ).

LC i

LA i

B
L

i

Bi
L

LCi

Figure 8. Contraction producing the point rAi
of P1C × P1C

The singularities of the pair of foliations F and G obtained in P1
C × P1

C are
exactly: a): 5 singularities at rAi with Milnor number 9 and algebraic multiplicity
m(rAi) = 3 (since its blow up produces an invariant exceptional line with two radial
points and two reduced singularities) and b): 5 saddle points.

Denoting H and V horizontal and vertical fibers, we write:

T ∗F = O(d1(F)H + d2(F)V )

NF = O((d1(F) + 2)H + (d2(F) + 2)V )

(analogously for G) and when combined with Darboux theorem:
∑

µ(F , p)− e(P1
C × P1

C) = T ∗F ·NF ,

we obtain:

5 · 9 + 5 · 1− 4 = 2d1(F) · d2(F) + 2(d1(F) + d2(F)),

hence d1(F) · d2(F) + d1(F) + d2(F) = 23.
Now we consider Poincaré-Hopf formula applied to the transformed curve of LBi

in P1
C × P1

C:
T ∗F · LBi = T ∗F · (H + V ) =

= 1 + Z(rLAi
) + Z(rLAj

) + Z(rLAk
)− χ(LBi) =

= 3 · 3 + 1− 2 = 8,

where i 6= j 6= k ∈ {0, 1, 2, 3, 4}; so we conclude that d1(F) + d2(F) = 8 and from
the previous relations:

d1(F) · d2(F) = 23− 8 = 15.

Easily we obtain that the unique solutions for the bi-degree (d1(F), d2(F)) are (3, 5)
and (5, 3). If F has bi-degree (3,5) then the companion modular foliation G has
bi-degree (5, 3), since they are related by the involution of I : P1

C × P1
C ª.
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3.4.1. The Birational Map E. We will consider the birational map E : P1
C×P1

C−− >

P2, in order to obtain from the foliations with bi-degrees (d1(F), d2(F)) = (3, 5)
and (d1(G), d2(G)) = (5, 3) a pair of foliations of the plane, both with degree 7.

Then so called elementary transformation E is defined as follows: it is given by
blowing up a point p and then contracting the strict transforms of the horizontal
and vertical fibers through p.

We will compute the degree of foliations in the plane, denoted F ′ and G′ by
using Poincaré-Hopf theorem applied to the straight line L in the plane which is
the transform of the exceptional line E = σ−1(p). Let us choose p = rA1 ∈ P1

C×P1
C,

a singularity of both F and G (cf. previous section).

p

E

L= E

V

H

H

V

col(V)

CP(1) x CP(1) CP(2) col(H)

Figure 9. Passing from P1C × P1C to P2.

If h and v are the dicritical points produced by the blow downs of the transformed
curves of the horizontal and vertical fibers, H and V in figure 9, then Poincaré-Hopf
in the plane yields:

d(F ′)− 1 =
∑

q∈L

Z(q,F ′)− χ(L) = 4 + m(h,F ′) + m(v,F ′)− 2,

where 4 is the contribution of two radial points and two reduced points. We can
use the remarks of Section 2.2.3 for the computation of m(p,F ′), obtaining:

d(F ′)− 1 = 4 + [tang(F ,H) + 1] + [tang(F , V ) + 1]− 2
= 4 + [(d1(F)− 3) + 1] + [(d2(F)− 3) + 1]− 2
= d1(F) + d2(F)− 2,

thus d(F ′) − 1 = 6 as desired. Since we blow up a point p belonging to 6 of the
invariant (1, 1)- curves, then the pair of modular foliations obtained in the plane
has 6 invariant straight lines besides the line L and 4 invariant conics, image of the
(1, 1)-curves not blown up.

Of course, we could choice another point p for the elementary transformation.
For instance if we choose a point which is regular for both foliations, then the pair
of foliations in the plane would have degree 10.
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4. Projective models for Modular Foliations of Y (5)

4.1. The Quotient of P2 by the Icosahedral Group. We can regard the quo-
tient in the definition of Y (5) (cf. ((1) in Introduction) as:

H2/PSL2(OK) ∼= (H2/Γ2)/PSL2(OK/(2)),

and as known: PSL2(OK/(2)) ∼= PSL2(F4) ∼= A5, the Icosahedral group. Following
the classical approach due to F. Klein, we describe Y (5) as a birational modification
of the quotient S := P2/A5, where A5 is the Icosahedral group acting on the plane
(which is the blow down of Y (5, (2))). In other words, we consider the modular
foliations of Y (5) as the quotient of H5 and H9 of Theorem 2 under their groups
of symmetries A5.

The facts described in detail in [13] that we use are the following. Let π : Ŝ → S

be the minimal desingularization of S = P2/A5. Since A5 is finite, Ŝ is birationally
equivalent to P2. From Hirzebruch’s work, we know that Euler characteristic of
Y (5) is 14 and Y (5) can be obtained from the plane P2 by means of 11 blow ups,
denoted f : Y (5) → P2. Denoting again σ : Y (5, (2)) → P2 the sixteen blow ups
of the Klein’icosahedral surface (cf. previous Sections), there is a commutative
diagram:

Y (5)

f

²²

Y (5, (2))
TK

oo_ _ _

σ

²²
P2

φ

²²Â
Â
Â P2

²²
Ŝ S = P2/A5

π−1
oo_ _ _ _

In what follows we exploit the map f : Y (5) → P2, but we remark that the
explicit coordinates of the rational map TK are known from Klein’s work on the
ring of invariants for the action of A5 on the plane[13] and so the study of TK could
be another way to get the modular foliations of Y (5).

The strict transform by the birational transformation φ : P2 − − > Ŝ of the
quotient of the icosahedral arrangement of lines is an irreducible rational quintic
curve Q ⊂ P2. There are affine coordinates (x, y) of P2 −L∞ for which the quintic
is: Q : −1728x5 + 720x3y − 80xy2 + 64(5x2 − y)2 + y3 = 0; the line at infinity
L = L∞ ⊂ P2 is the strict transform by φ of a component of the exceptional divisor
introduced by π.

The eleven points to be blow up by f : Y (5) → P2 are the points that must be
blown up in order to obtain normal crossing between the strict transform of Q by
f and the exceptional divisor of its resolution. The singularities of the quintic Q
are at the points (0, 0), (1, 4), ( 32

27 , 1024
81 ) and at the infinity (0, 0) = (w, s) = (x

y , 1
y ).

At (0, 0) and at infinity the quintic is locally given as z2− t5 = 0, at ( 32
27 , 1024

81 ) it is
locally given as z2−t3 = 0 and at (1, 4) Q has a nodal point. The resolution process
is done by means of four blow ups at (0, 0) (and infinitely near points), four blow
ups at infinity (0, 0) = (w, s) (and infinitely near points) and three at ( 32

27 , 1024
81 )

(and infinitely near points), as shown in Figure 10. Some remarks on Figure 10
are useful. We denote by Ei the exceptional line of the i-th blow up Ei = σ−1

i (pi),
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_
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_
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_

_

_
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_
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_
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4σ σ8

σ11
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σ1 σ9 5σ
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CP(2)

Y(5) 1E
_

Figure 10. The 11 blow ups composing f : Y (5) → P2.

for i = 1, . . . 11. After, we denote by Ei their strict transforms by subsequent blow
ups. For instance, according to Figure: E2

i = −1 for i ∈ {4, 8, 11}, E
2

i = −2, for
i ∈ {1, 3, 5, 7, 10} and L

2
= −2, E

2

i = −3 for i ∈ {2, 6, 9}.
Denoting the sequence of eleven blow ups by f , the strict transform of the quintic

in Y (5), denoted Q, can be described O(Q) in Pic(Y (5) as:

f∗OP2(5)⊗ (−2E1 − 2E2 −E3 − E4 − 2E5 − 2E6 − E7 − E8 − 2E9 − E10 − E11).

Hence Q is a rational nodal curve with self-intersection 52 − 26 = −1, as shown
in Figure 11. In Y (5), Q corresponds to the desingularization of the unique cusp
introduced by compactification of H2/PSL2(OK).

(-1)

Figure 11. Q ⊂ Y (5) is a cycle introduced in the resolution of the cusp
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4.2. Numerical Data and Determination of Vector Fields. Considering Y (5)
as the blow up plane by f , its pair of modular foliations, denoted H2 and H3 (the
indices 2 and 3 will be justified), are the transformed foliations of foliations in the
plane denoted H2 and H3.

The pair H2 and H3 has as (reduced) tangency curve the following curves: i)
the strict transform of the quintic Q, denoted Q, ii) the strict transform of the line
at infinity L, denoted L and iii) the curves Ei, for i = 1, 2, 3, 5, 6, 7, 9, 10.

Remark that E4, E8, E11 are not H2 or H3-invariant, since they intersect the
cycle Q and the unique singularities of these foliations along the cycle are at the
node of Q.

The strict transform of the line at infinity L in Y (5), denoted L, can be described
in Pic(Y (5)) as:

O(L) = f∗O(1)⊗ (−E1 − E2 − E3)
and we can easily write Ei in terms of Ei’s, for instance:

E1 = E1 − E2, E2 = E2 − E3 − E4,

etc. So the tangency curve Dtang between H2 and H3 verifies:

O(Dtang) =

= f∗O(6)⊗ (−2E1 − 3E2 − 2E3 − 3E4 −E5 − 2E6 −E7 − 3E8 −E9 −E10 − 3E11).
Recalling that the tangency divisor Dtang verifies O(Dtang) = T ∗H2

⊗ NH3
, we

obtain:

f∗O(d(H2) + d(H3) + 1)⊗O(−
11∑

i

(l(H2, pi)− 1 + l(H3, pi) · Ei) =

f∗O(6)⊗ (−2E1 − 3E2 − 2E3 − 3E4 − E5 − 2E6 − E7 − 3E8 − E9 − E10 − 3E11).
From this isomorphism we obtain the following numerical equalities:

d(H2) + d(H3) = 5, l(H2, pi) + l(H3, pi) = 3, for i = 1, 3, 6,

l(H2, pi)+l(H3, pi) = 4 for i = 2, 4, 8, 11, l(H2, pi)+l(H3, pi) = 2 for i = 5, 7, 9, 10.

Now we determine the numerical data of both foliations:

Proposition 2. For H2 we have:
d(H2) = 2 l(p1) = 1 l(p2) = 2 l(p3) = 1 l(p4) = 2 l(p5) = 1
l(p6) = 1 l(p7) = 1 l(p8) = 2 l(p9) = 1 l(p10) = 1 l(p11) = 2

and for H3:
d(H3) = 3 l(p1) = 2 l(p2) = 2 l(p3) = 2 l(p4) = 2 l(p5) = 1
l(p6) = 2 l(p7) = 1 l(p8) = 2 l(p9) = 1 l(p10) = 1 l(p11) = 2

Proof: Both foliations, H2 and H3, admit as invariant algebraic curves the quintic
Q and the line L∞. This is sufficient to determine H2. If there exists F of degree
2 leaving Q and L∞ invariant then the tangency locus of F and H2 would have
degree 5 and would contain Q and L∞. We determined H2 using the computer and
after making its resolution, cf. Appendix B, we determined l(pi), i = 1 . . . 11, for
H2.

From this data we obtain that

T ∗H2
= σ∗O(1)⊗ (−E2 − E4 − E8 − E11).

Since the tangency locus of H2 and H3 is given by the formula

O(Dtang) = T ∗H2
⊗NH3
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we obtain

T ∗H3
= σ∗O(2)⊗ (−E1 − E2 − E3 − E4 − E6 − E8 − E11) .

Observe that this determine l(pi), i = 1 . . . 11, for H3. Therefore we can translate
these conditions on an algebraic system of equations on the coefficients of the degree
3 vector fields. Solving this sytem with the help of a computer algebra system we
can find the polynomial vector field of degree 3 with the numerical data prescribed
(degrees and multiplicities along the resolution).In Appendix B we give in detail
the reduction of singularities of H3 and also that of H2. ¤

4.2.1. Canonical line bundles of H2 and H2. We describe the canonical line bundles
of the modular foliations of Y (5). These line bundles are explicit examples with
numerical Kodaira dimension 1 and Kodaira dimension −∞.

Remark, from the previous subsection, that

T ∗H2

2 = T ∗H3

2 = −3.

From the Zariski decomposition T ∗H2
= PH2 + NH2 and T ∗H3

= PH3 + NH3 we
conclude that N2

H2
= N2

H3
= −3. But the sporadicity property of the modular

foliations imply that NH2 6= NH3 . The rational coefficients of each component Ni

of the N - part of T ∗H2
and T ∗H3

are easily computed, provided we use the property
of Zariski decomposition:

T ∗H ·Ni = N ·Ni,

combined with the fact that each Ni is H2-invariant (McQuillan’s theorem from
Introduction) and Poincaré-Hopf theorem.

For this, we need is to know how many singularities are over each Ei and their
Poincaré-Hopf indices. This is provided by the study of the reduction of singularities
in Appendix 2 (see Figures 17 and 18). We obtain:

NH2
=

3
5
E1 +

1
5
E2 +

2
3
E3 +

1
3
L +

1
5
E5 +

2
5
E6 +

1
2
E7 +

1
3
E9 +

1
2
E10

and

NH3
=

1
5
E1 +

2
5
E2 +

1
3
E3 +

2
3
L +

1
5
E5 +

3
5
E6 +

1
2
E7 +

1
3
E9 +

1
2
E10

which satisfy N2
H2

= N2
H3

= −3.

5. Projective models for Modular Foliations of Y (5, (
√

5))

5.1. Y (5,
√

5) as a Double Covering of the Plane. In this section we address
Theorem 5 of the Introduction. The description of Y (5,

√
5) in [12] places it as an

Icosahedral-equivariant 2-fold ramified covering of the plane (blow up at 6 points).
So in order to prove Theorem 5, our first task is to show how to obtain Y (5,

√
5)

from the plane just using blowing ups and blowing downs, which is not explicitly
described in [12].

Known facts about Y (5,
√

5) from [12] are: i) H2/Γ√5 is a smooth open surface,
ii) its compactification H2/Γ√5 is done by adding six cusps. Each one of the 6
cusps of Y (5, (

√
5)) is desingularized as a cycle of two rational curves Ai ∪Bi, with

intersection −3.
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(-3)

(-3)

Figure 12. Cycles composed by two components on Y (5, (
√

5))

Also is known from [12] that the smooth rational curve which extends the di-
agonal in H2 to Y (5, (

√
5)), denoted by C, has self-intersection 2. The action of

SL2(O)/Γ√5 on Y (5, (
√

5)) carries C to itself and C passes by each one of the six
cycles Ai ∩Bi at the nodal points (see Figure 13).

C

A

B

A

B

0

0

5

5

Figure 13. The resolution of cusps of Y (5, (
√

5))

The extension of the involution I : H2 ª, I(x, y) = (y, x), is denoted also by
I : Y (5, (

√
5) ª and obviously I(C) = C. Consider the quotient Y (5, (

√
5))/I and

the 2-fold covering

p : Y (5, (
√

5)) → Y (5, (
√

5))/I.

ramified along C. It was also proven by Hirzebruch that Y (5, (
√

5))/I is isomorphic
to P2 blow up at the six points. These points are v11, . . . v16 given in Section 3 as
associated to the vertices of the icosahedron. The ramification curve becomes in
the plane (so after six blow downs) Klein’s curve of degree 10, which is a rational
curve, having at v11, . . . v16 singularities which are double cusps, invariant by the
action of the Icosahedron in the plane.

Figure 14. Double cusps of Klein degree 10 curve at the points vi, i = 11, . . . 16

Remark that each cycle has self-intersection (Ai +Bi)2 = −3−3+4 = −2 which
is coherent with the fact that the cycle covers an exceptional line E = σ−1(vi) (
that is, −2 = 2 · E · E). Remark that after 6 blow ups at vi, the self-intersection
of the degree 10 plane curve becomes equal to 102 − 6 · 42 = 4 (since ν(C, vi) = 4)
and after covering it becomes equal to 2.
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v

v

σ

σ

CP(2) Y(5, 5 )
I

Y(5, 5 )
p

Figure 15. The 2-fold covering of Y (5, (
√

5)) over the blown up plane

5.2. Y (5,
√

5) as a Modification of P2 and the Minimal Involution. The fact
that the surface Y (5, (

√
5)) is a rational surface follows from the fact that there

is a smooth rational curve with positive self-intersection, namely C with C2 = 2.
Our aim now is to obtain it from the plane by means of blowing ups and blowing
downs.

Consider in P2 the five conics Ci1,...i5 passing by 5 among the 6 vertices
v11, . . . v16. After the blow ups, these conics becomes (−1)-curves Ci1,...i5 in
Y (5, (

√
5))/I. Remark that Ci1,...i5 does not intersect the transformed curve of

C, since the 20 points of intersection of Ci1,...i5 and C were concentrate at 5 among
the 6 vertices vij , at which ν(C, vij) = 4. Therefore, taking the 2-fold covering,
there are 12 pairwise disjoint (−1)-curves,which are the pre-images of the curves
Ci1,...i5 . Each curve Ai and Bi of the cycles intersect 5 among these 12 (−1)-curves
(see Figure 16)

C

C

   
i  5i1

C
(1)

(2)

i 1 i  5 Y(5,  5 )

Figure 16. Curves C
(1)
i1...i5

and C
(2)
i1...i5

are pre-images of Ci1...i5

Now we consider the map h : Y (5, (
√

5)) → W , which corresponds to the blow
down of all the 12 exceptional lines described in Y (5, (

√
5)).

Then it is clear that the Euler characteristic of W is e(W ) = e(Y (5, (
√

5))−12. It
is proven in [12] that e(Y (5, (

√
5)) = 16. So the rational surface W with e(W ) = 4
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is a Hirzebruch surface Σn. Also we see that the transformed curve of Ai and Bi in
S has self-intersection −3+5 = 2. Now, following the same proof by Hirzebruch in
[10] (using that rational these rational curves have self-intersection 2 in the surface
W = Σn), we can show that W = P1

C × P1
C.

5.3. Numerical Data of the Foliations. In order to find the numerical data of
the modular foliations in W = P1

C × P1
C, let us apply the tangency formula to the

image of C in W = P1
C × P1

C, whose self-intersection 2 has not changed by the map
h : Y (5, (

√
5)) → W . We have:

T ∗F · C = tang(C,F)− C2 = 12− 2

since the twelve reduced singularities along the cycles Ai ∪ Bi belong to C. Then
d1(F) + d2(F) = 10 (also d1(G) + d2(G) = 10 ). The tangency curve of the pair of
modular foliations in P1

C × P1
C is then composed by 12 curves of bi-degrees (1, 1),

images of the components of cycles by h. If we denote also by F and G the foliations
in P1

C × P1
C then the tangency along these curves produce the relations:

d1(F) + d2(G) + 2 = d2(F) + d1(G) + 2 = 12.

We do not know yet the Milnor numbers of the 12 dicritical singularities ri,
introduced by the blowing downs. For computing this, we use Darboux theorem in
P1
C × P1

C, taking in consideration the twelve saddle singularities along C:

12 +
12∑

i=1

µ(ri)− 4 = T ∗F ·NF ,

then:
12∑

i=1

µ(ri,F) = 2 · (d1(F) · d2(F) + d1(F) + d2(F))− 8 =

= 2d1(F) · d2(F) + 12

and so, for each ri:

µ(ri,F) =
d1(F) · d2(F)

6
+ 1.

The unique solution of this equation for (non-zero) bi-degrees (whose sum we know
is 10) is d1(F) = 4, d2(F) = 6 (or vice-versa) and µ(ri,F) = 5. After we know the
Milnor numbers, the invariant l(ri,F) are easily computed: are equal to 3, for all
i = 1 . . . 12.

Now, by an elementary transformation E : P1
C × P1

C − − > P2 (cf. Section
3.4.1) we get foliations in the plane with the same degrees. As remarked in that
Section, these transformations are defined by blowing up a point p and subsequent
contraction of the transformed curves of horizontal and vertical lines, denoted H
and V . For instance, if we blow up a regular point p for the foliations, we get
foliations in the plane whose degrees are both equal to 12. By other side, if we
choose the elementary transformation which blow up one dicritical point p = ri,
we get degrees 9 for both modular foliations. In this model, the algebraic curves
invariant for the modular foliations are 5 straight lines and 7 conics. The lines are
images in the plane of the (1, 1)-curves passing by p = ri, whose self-intersection
decreases by one by the blow up at p and which are not affected by the contraction
of H and V . The conics correspond to the (1, 1)-curves not affected by the blow



HILBERT MODULAR FOLIATIONS 29

up at p but whose self-intersection 2 is increased by 2 under the contractions of H
and V .

At last, a remark on the canonical line bundles. If F denotes a reduction of
singularities of the modular foliation in P1

C × P1
C, obtained from 12 blow ups at

dicritical points, then T ∗F is nef (the N -part is empty) and

T ∗F = O(4H + 6V )⊗O(−
12∑

i=1

2Ei)

gives T ∗F · T ∗F = 0. Also T ∗G · T ∗G = 0 holds for the companion foliation, since

T ∗G = O(6H + 4V )⊗O(−∑12
i=1 2Ei).

Appendix A. Factorization of the Cremonian involution

In this section we construct the involution T in the plane associated to the
involution of Y (5, (2)) (which sends H5 to H9 in Theorem 2) as a composition of
three quadratic transformations of the plane:

T = Q3 ◦Q2 ◦Q1.

The transformation T is a degree five Cremonian transformation with six inde-
termination points and is described by Godeaux [9] as a particular case of the Geiser
involution (in general a degree eight involution with 7 indetermination points). In
this particular case, the 2-net of rational curves defining T is composed by degree
five curves with double points at the six indetermination points. According to [9],
in this case, there is a non-empty fixed part of degree 3 in the 2-net of curves of
degree 8 defining the general Geiser involution.

Moreover, in this section we construct birational modifications of H5, denoted
Hk, k = 6, 7, 8 of degrees 6, 7, 8 respect. given as follows: H6 = (Q−1

1 )∗(H5),
H8 = ((Q2◦Q1)−1)∗(H5) andH9 = ((Q3◦Q2◦Q1)−1)∗(H5). With this factorization
process we are led also to a better understanding of the effect of T = T5 on the
foliations and on the configuration of lines.

The standard quadratic transformation of the plane, Q : P2 − − > P2, is given
in homogeneous coordinates by Q(x0 : x1 : x2) = (x1 · x2 : x0 · x2 : x0 · x1). It
factorizes as the blow up at e1 := (1 : 0 : 0), e2 := (0 : 1 : 0), e3 := (0 : 0 : 1), with
Ei = σ−1

i (ei), followed by the blow downs of the strict transforms Lk of the three
lines Lk := ei · ej to points qk, k = 1, 2, 3. The strict transforms of Ei are three
lines E′

i ⊂ P2 connecting two points among qk.

Lemma 1. Let Q : P2−− > P2 be the standard quadratic transformation (keeping
the previous notations). If C is a degree d = d(C) curve, then the degree of the strict
transform Q(C) is 2 ·d(C)−∑3

i=1 νei(C), where νei(C) is the algebraic multiplicity.
Moreover

νqk
(Q(C)) = d(C)− νei(C)− νej (C), i 6= j 6= k ∈ {1, 2, 3}.

If H is a foliation of degree d = d(H), then the degree of the foliation Q∗(H)
(with isolated singularities) is equal to 2 · d(H) + 2−∑3

i=1 l(ei,H). Moreover

l(qk, Q∗(H)) = d(H) + 2− l(ei,H)− l(ej ,H), i 6= j 6= k ∈ {1, 2, 3}.
Proof: The assertion on curves present in this Lemma is well-known from classical
books on algebraic curves.
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The assertion on the degrees of foliations can be proven if we remark that by
definition d(Q∗(H)) is the sum of tangencies with a generic straight line L; but L
is the strict transform by Q of a conic C passing by e1, e2 and e3. So the proof
follow easily from the formula for the variation of order of tangencies under blow
ups (at the end of Section 2.2.3) and from the formula

tang(C,H) = NH · C − χ(C) = 2 · d(H) + 2.

As explained in Section 2.2.3, the computation of l(qk, Q∗(H)) depends on the sum
of tangencies along the exceptional line Lk (if it is not invariant by the foliation)
or on the sum of Poincaré-Hopf indices along Lk and is easily done.

Let us start the definition of T = Q3 ◦Q2 ◦Q1.
Definition of Q1. By a linear transformation of the plane we can put three vertices
as:

e1 = v11, e2 = v13, e3 = v15

and take Q1 the standard transformation based on these points. So the strict
transforms of LB2 = v11v13, LB3 = v13v15 and LC0 = v11v15 by the blow ups done
by Q1 will be contracted, producing again the projective plane.

By Lemma 1, the transforms of LB0 = v14v16, LA2 = v12v16 and LA3 = v12v14

(cf. Section 3) under the Cremonian transformation are conics passing by the points
introduced by contraction of the strict transforms of LB2 , LB3 and LC0 , which we
denote resp. qB2 , qB3 and qC0 . All other lines LAi , LBi , LCi in the configuration
are transformed into straight lines, because each one has received one blow up at
one point among {v11, v13, v15}.

LetH′5 denote the transformed foliation (Q−1
1 )∗(H5) (with isolated singularities).

By Lemma 1, d(H′5) = 2 · 5 + 2− 3 · 2 = 6 and its the singular set is the following:
i. H′5 has singularities at the images of o1, o2, o5, o9, v12, v14 and v16 by Q1

that are isomorphic to those of H5, that is, are radial points;
ii. there are degenerate singularities of H′5 at qB2 , qB3 and qC0 . The reduction

of singularities of qB2 is as follows: one blow up produces an invariant
exceptional line E with two radial points, isomorphic to the radial points o6

and o4 (which need to be blow up again) and more two reduced singularities
isomorphic to the singularities LA2 ∩LB2 and LC2 ∩LB2 of F . The picture
is like that of previous Figure 8 in Section 3.4.

In order to compute the algebraic multiplicity of H′5 at qB2 , qB3 and qC0 ,
we use the known formula∑

p∈E

µ(σ∗(H′5), p) = µq −mq(H′5) · (mq(H′5)− 1) + 1,

which gives

4 =
∑

p∈E

µp(σ∗(H′5)) = µqA1
(H′5)−mqB2

(H′5) · (mqB2
(H′5)− 1) + 1

and summing for the three points:

mqB2
· (mqB2

− 1) + mqB3
· (mqB3

− 1) + mqC0
· (mqC0

− 1)− 9 =

= µqB2
(H′5) + µqB3

(H′5) + µqC0
(H′5) =

= [62 + 6− 1− (52 + 5 + 1− 3− 3 · 4)]− 9 = 18;
from the homogeneity in the definition of qB2 , qB3 , qC0 , we obtain mqB2

=
mqB3

= mqC0
= 3.
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At this point we can verify directly that the numerical Kodaira dimension of H′5
is one, exemplifying the birational invariance of this concept; we have:

(d(H′5)− 1)2 = (m(qB2 ,H′5)− 1)2 + (m(qB3 ,H′5)− 1)2+

+(m(qC0 ,H′5)− 1)2 +
∑

p 6=qA1 ,qB4 ,qB0

m(p,H′5)2,

where in ∑

p 6=qB2 ,qB3 ,qC0

m(p,H′5)2

we include the contribution of the blow ups of radial points along the exceptional
introduced by blow up of qB2 , qB3 , qC0 , that is, we have the equality 25 = 3 · 4+13.

We conclude that H′5 is a degree 6 modular foliation, denoted H6 = (Q1)∗(H5).
Definition of Q2.

Now consider the points Q1(v12), Q1(v14), Q1(v16). They are not collinear and
we can take a linear transformation putting:

e1 = (1 : 0 : 0) = Q1(v12), e2 = (0 : 1 : 0) = Q1(v14), e6 = (0 : 0 : 1) = Q1(v16)

and we define Q2 as the standard quadratic transformation with base points at
these points. Since H6 has lei(H6) = 2, we obtain from Lemma 1:

d((Q2)∗H6) = 2 · 6 + 2− 3 · 2 = 8,

lqk
((Q2)∗H6) = 6 + 2− 2 · 2 = 4.

Remark that the lines the lines Lk := eiej are not H6-invariants. Since ei and
ej are radial points for H6, then tang(Lk, ei) + tang(Lk, ei) = 4 and the points qk

introduced by the blow downs of (the transforms of) Lk are dicritical and we have
lqk

((Q2)∗H6) = 4. So we have obtained that (Q2)∗H6 = (Q2 ◦ Q1)∗H5 as model
H8 of degree 8.
Definition of Q3. In order to complete the construction of the Cremonian transfor-
mation T = Q3◦Q2◦Q1, let us define Q3. For doing this take a linear transformation
of the plane such that:

e1 = (1 : 0 : 0) = Q2(Q1(v11))
e2 = (0 : 1 : 0) = Q2(Q1(v13))
e6 = (0 : 0 : 1) = Q2(Q1(v15)).

Now again by Lemma 1,

d((Q3)∗H8) = 2 · 8 + 2− 3 · 3 = 9,

lqk
((Q3)∗H8) = 8 + 2− 2 · 3 = 4

and qk are dicritical points eliminable by one blow up, since Q3 has blow up all
singular points of H8 that needed more that one blow up in its reduction. In this
way we have obtained the model of degree 9 in the pair (H5,H9) as H9 = T∗(H5).

The composition T = Q3 ◦Q2 ◦Q1 of three quadratic transformation has degree
five as a birational transformation (the degree of the composition is not eight,
because the base points of the quadratic transformation in the composition are not
disjoint). In order to see this, consider the image of the 2-dimensional linear system
of curves of degree 5 passing doubly by v11, . . . v16. If C denotes one of such curves,
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the degrees of its strict transforms are computed, by means of the previous Lemma
as:

d(Q1(C)) = 2 · 5− 3 · 2 = 4, and νqk
(Q1(C)) = 1

and
d(Q2(Q1(C)) = 2 · d(Q1(C))− 3 · 2 = 2;

finally d(Q3(Q2(Q1(C))) = 2 · d(Q2(Q1(C))− 3 · 1 = 2 · 2− 3 = 1; which gives a 2-
dimensional system of lines, that is P2. The birational transformation T : P2−− >
P2 = N ′ can be given as T (x0 : x1 : x2) = (P0 : P1 : P2) where P0, P1, P2 is a basis
of the C-vector space of polynomials of degree 5 vanishing with order at two in the
five points v11 . . . v16.

At last, let us explain how the transformation T = Q1 ◦Q2 ◦Q3 do preserve the
configuration of 15 lines LAi

, LBi
, LCi

, although this is not the case for any of the
quadratic transformations Qi, i = 1, 2, 3.

For showing this, let us divide the set of 15 lines in three subsets; a) lines that
does not pass by v11, neither by v13,nor v15; b) lines that pass by exactly one point
among {v11, v13, v15} and c): lines that pass by a pair of points among {v11, v13, v15}.

In case a), for fixing ideas, take the line LB0 = v14v16. The strict transform
Q1(B0) is a conic. Since B0 does not contain v12 the transformation Q2 operates
on Q1(B0) by means of two blow ups at Q1(v14), Q1(v16) and so: d(Q2(Q1(C0))) =
2 · 2 − 2 = 2, and Q2(Q1(B0)) also is a conic. Now since Q1(B0) contains pLC0

,
pLB3

, pLB2
, we conclude that d(Q3(Q2(Q1(B0)))) = 2 · 2 − 3 = 1 and we obtain a

line as desired.
In case b), if a line in the configuration contains just one point among

{v11, v13, v15}, for fixing ideas let us suppose this point is v11. Then Q1(L) is
also a line, passing by just one of the points pLC0

, pLB3
, pLB2

, namely by pLB3
,

because LB3 = v13v15.
But any line in the configuration of 15 lines must contain 2 vertices vij . Since

v11 ∈ L, v13, v15 6∈ L then L contains exactly one point among {v12, v14, v16.
So when applying Q2 exactly one point of Q1(L) (a line) is blow up and
d(Q2(Q1(L))) = 2 · 1 − 1 = 1. when applying Q3 we blow up Q2(pB3); so
d(Q3(Q2(Q1(L)))) = 2 · 1− 1 = 1 and again we have a line.

Finally, in the case c), if a line in the configuration contains a pair of points
among {v11, v13, v15} it does not contains the third one (they are not collinear).
But then L is blow down by Q1 and re-introduced as one of the three lines created
by Q3.

Appendix B. Reduction of singularities of the plane models of Y (5)

Here we give a detailed reduction of singularities for the modular foliations in the
plane associated to Y (5), given in Proposition 2. Next Figures 17 and 18 present all
the reduction process, composed each by eleven blowing ups f : Y (5) → P2. Remark
that the reduced singularities which are not at the corners of the exceptional divisors
are denoted respectively by qi, qL and ri, rL in these Figures.

B.1. Resolution of H2. We begin with the reduction of singularities of H2 at
infinity in the plane. The foliation H2 is induced in affine coordinates (x, y) of the
projective plane by

Ω = (80y − 60xy − 80x2)dx− (y + 32x− 36x2)dy = 0.
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Figure 17. Resolution of H2

In the chart (u, v) = ( 1
x , y

x ) there is a reduced singularity at qL := (0,− 10
3 ) = (u, v)

(with Camacho-Sad index − 3
2 relative to the line at infinity ), as can be easily

verified. The foliation H2 is induced at the point at infinity p1 := (0, 0) = (w, s) =
(x

y , 1
y ) by

Ω(w, s) = (80s2 − 60ws− 80w2s)dw + (s− 48ws + 24w2 + 80w3)ds = 0,

where s = 0 is an affine equation of the H2-invariant line at infinity. The blowing
up σ1 at p1 is written in local charts as:

σ1(x1, t1) = (x1, x1t1) = (w, s), σ1(u1, y1) = (u1y1, y1) = (w, s),

and

σ∗1Ω(w, s) = x1 · [(−36x1t1 + t21 + 32x1t
2
1)dx1 + (x1t1 + 24x2

1 − 48x2
1t1 + 80x3

1)dt1],

that is, l(H2, p1) = 1.
The unique singularity of the transformed foliation along E1 := σ−1

1 (p1) is at
(0, 0) = (x1, t1), as is easily verified. The blowing up σ2 at p2 := (0, 0) = (x1, t1) is
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written in local charts:

σ2(x2, t2) = (x2, x2t2) = (x1, y1), σ2(u2, y2) = (u2y2, y2) = (x1, y1),

and

σ∗2 [(−36x1t1 + t21 + 32x1t
2
1)dx1 + (x1t1 + 24x2

1 + 80x3
1 − 48x2

1t1)dt1] =

= x2
2 · [(−12t2 − 16x2t

2
2 + 80x2t2 + 2t22)dx2 + (24x2 + t2x2 + 80x2

2 − 48x2
2t2)dt2],

that is, l(H2, p2) = 2.
The non-reduced singularity of the transformed foliation along E2 is at (0, 0) =

(x2, t2). There are also two reduced singularities, one at q2 := (0, 6) = (x2, t2)
(with Camacho-Sad index − 5

2 relative to E2) and the other is at infinity (0, 0) =
(u2, y2) = E1 ∩ E2 (with C-S index − 1

2 relative to E2).
The blowing up σ3 at p3 := (0, 0) = (x2, t2) is written in local charts:

σ3(x3, t3) = (x3, x3t3) = (x2, y2), σ3(u3, y3) = (u3y3, y3) = (x2, y2),

and

σ∗3 [(−12t2 − 16x2t
2
2 + 80x2t2 + 2t22)dx2 + (24x2 + t2x2 + 80x2

2 − 48x2
2t2)dt2] =

= x3 · [(24x3 + 80x2
3 − 47x2

3t3+)dt3 + (12t3 + 160x3t3 + 3x3t
2
3 − 64x2

3t
2
3)dx3],

that is, l(H2, p3) = 1.
There is a reduced singularity at (0, 0) = (x3, t3) which is the crossing point

E3 ∩ L (with Camacho-Sad index −2 relative to E3). The point at infinity p4 :=
(0, 0) = (u3, y3), p4 = E3 ∩E2, is a non-reduced singularity, where the transformed
foliation is induced by:

(12u3 + 3u3y3 + 160u2
3y3 − 64u2

3y
2
3)dy3 + (−12y3 + 2y2

3 + 80u3y
2
3 − 16u3y

3
3)du3 = 0,

which clearly is a dicritical point of radial type, that is, l(H, p4) = 2.
Let us consider now the reduction of H2 at p5 := (0, 0) = (x, y) in the projective

plane. The blowing up σ5 at p5 is written in local charts:

σ5(x5, t5) = (x5, x5t5) = (x, y), σ5(u5, y5) = (u5y5, y5) = (x, y),

and
σ∗5((80y − 60xy − 80x2)dx− (y + 32x− 36x2)dy) =

= x5 · [(−32x5 − x5t5 + 36x2
5)dt5 + (48t5 − 80x5 − 24x5t5 − t25)dx5],

that is, l(H2, p5) = 1.
The singularities of the transformed foliation along E5 := σ−1

5 (p5) are a reduced
singularity at q5 := (0, 48) = (x5, t5) (with Camacho-Sad index − 5

3 relative to E5)
and a non-reduced singularity at (0, 0) = (x5, t5).

The blowing up σ6 at p6 := (0, 0) = (x5, t5) is written in local charts:

σ6(x6, t6) = (x6, x6t6) = (x5, y5), σ6(u6, y6) = (u6y6, y2) = (x5, y5),

and
σ∗6 [(−x5t5 − 32x5 + 36x2

5)dt5 + (48t5 − 24x5t5 − 80x5 − t25)dx5] =

= x6 · [(−80 + 16t6 + 12t6x6 − 2x6t
2
6)dx6 + (−32x6 + 36x2

6 − t6x
2
6)dt6],

that is l(H2, p6) = 1.
There is a reduced singularity at (0, 0) = (u6, y6) which is the intersection E5∩E6

(with Camacho-Sad index − 1
3 relative to E5). The non-reduced singularity of the

transformed foliation along E6 is at (0, 5) = (x6, t6).
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After the linear change of coordinates (x6, t6) 7→ (x6, t6−5), the foliation around
p7 is induced by:

(16t6 + 10x6 − 8x6t6 − 2x6t
2
6)dx6 + (−32x6 + 31x2

6 − x2
6t6)dt6 = 0.

The blowing up σ7 at p7 is written in local charts as :

σ7(x7, t7) = (x7, x7t7) = (x6, y6), σ7(u7, y7) = (u7y7, y7) = (x6, y6),

and

σ∗7 [(−2x6t
2
6 − 8x6t6 + 10x6 + 16t6)dx6 + (−x2

6t6 + 31x2
6 − 32x6)dt6] =

= x7 · [(10− 16t7 + 26x7t7 − 2x2
7t7 − x2

7t
2
7)dx7 + (−32x7 + 31x2

7 − x3
7t7)dt7],

that is l(H2, p7) = 1.
There is a reduced singularity at q7 := (0, 5

8 ) = (x7, t7) (with Camacho-Sad index
−2 relative to E7). The non-reduced singularity of the transformed foliation is at
(0, 0) = (u7, y7) ∈ E7, where the foliation is induced by

(−16u7 + 10u2
7 − 3u2

7y
2
7 + 23u2

7y
2
7)dy7 + (16y7 + 10u7y7 − 8u7y

2
7 − 2u7y

3
7)du7,

which is clearly a dicritical singularity of radial type; that is, l(H2, p8) = 2.
Now let us reduce the singularity of H2 in the projective plane at ( 32

27 , 1024
81 ) =

(x, y). The blowing up σ9 at p9 = ( 32
27 , 1024

81 ) produces two singularities along
E9 = σ−1

9 (p9); one is a reduced singularity at q9 := (0, 80
3 ) = (x9, t9) with index −3

relative to E1 and a non-reduced singularity at (0, 320
9 ) = (x9, t9). It can be easily

verified that l(H2, p9) = 1.
Next, the blow up σ10 at p10 := (0, 320

9 ) = (x9, t9) produces two singularities
along E10 = σ−1

10 (p10), one is a reduced singularity at q10 := (0, 105) = (x10, t10)
with index −2 relative to E10 and a non-reduced singularity at infinity (0, 0) =
(u10, y10). It is easily verified that also l(H2, p10) = 1. At last, it can be verified that
p11 := (0, 0) = (u10, y10) is a dicritical point of radial type, that is, l(H2, p11) = 2.

At last, at the point (1, 4) = (x, y) in the projective plane, H2 has a reduced
singularity. The quotient of eigenvalues of the linear part of a vector field inducing
it is equal to −3+

√
5

2 .

B.2. Resolution of H3. We begin with the singularity at infinity in the projective
plane, which has the more involved resolution.

The foliation H3 is induced in affine coordinates (x, y) of the plane by:

Ω = (−5
4
y2 + 20xy − 60x3)dx + (−y +

3
4
xy + x2)dy = 0.

In the chart at infinity (u, v) = ( 1
x , y

x ) there is no singularity, as can be easily
verified. The foliation H3 is induced at p1 := (0, 0) = (w, s) = (x

y , 1
y ) by

Ω(w, s) = (−5
4
s2 + 20ws2 − 60w3s)dw + (

1
2
ws− 21w2s + 60w4 + s2)ds = 0,

where s = 0 is an affine equation of the H3-invariant line at infinity.
The blowing up σ1 at p1 is written in local charts:

σ1(x1, t1) = (x1, x1t1) = (w, s), σ1(u1, y1) = (u1y1, y1) = (w, s),

and

σ∗1(Ω(w, s)) = x2
1 · [(−

3
4
t21 − x1t

2
1 + t31)dx1 + (

1
2
x1t1 − 21x2

1t1 + 60x3
1 + x1t

2
1)dt1],
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Figure 18. Resolution of H3.

that is, l(H3, p1) = 2.
The singularities of the transformed foliation along E1 := σ−1

1 (p1) are at
(0, 0) = (x1, t1) and (0, 3

4 ) = (x1, t1). The point r1 := (0, 3
4 ) = (x1, t1) is a re-

duced singularity (with CS index equal to − 5
3 relative to E1).

The blowing up σ2 at p2 := (0, 0) = (x1, t1) is written in local charts:

σ2(x2, t2) = (x2, x2t2) = (x1, y1), σ2(u2, y2) = (u2y2, y2) = (x1, y1),

and

σ∗2 [(−3
4
t21 − x1t

2
1 + t31)dx1 + (

1
2
x1t1 − 21x2

1t1 + 60x3
1 + x1t

2
1)dt1] =

= x2
2 · [(60x2t2 − 1

4
t22 − 22x2t

2
2 + 2x2t

3
2)dx2 + (

1
2
x2t2 − 21x2

2t2 + 60x2
2 + x2t

2
2)dt2],

that is l(H3, p2) = 2.
The non-reduced singularity of the transformed foliation along E2 is at (0, 0) =

(x2, t2). Also there is a reduced singularity at infinity (0, 0) = (u2, y2) = E2 ∩ E1

(with CS index − 1
3 relative to E1).
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The blowing up σ3 at p3 := (0, 0) = (x2, t2) is written in local charts:

σ3(x3, t3) = (x3, x3t3) = (x2, y2), σ3(u3, y3) = (u3y3, y3) = (x2, y2),

and

σ∗3 [(60x2t2 − 1
4
t22 − 22x2t

2
2 + 2x2t

3
2)dx2 + (

1
2
x2t2 − 21x2

2t2 + 60x2
2 + x2t

2
2)dt2] =

= x2
3 · [(60x3 +

1
2
x3t3 − 21x2

3t3 + x3
3t

2
3)dt3 + (120t3 +

1
4
t23 − 43x3t

2
3 + 3x2

3t
2
3)dx3],

that is, l(H3, p3) = 2.
There is a reduced singularity at r3 := (0,−480) = (x3, t3) ∈ E3 and a reduced

singularity at (0, 0) = (x3, t3) which is the crossing point with L (with Camacho-Sad
index −2 relative to L). The point at infinity in E3, that is, p4 := (0, 0) = (u3, y3)
is a non- reduced singularity, where the foliation is induced by:

(
−1
4

y3 + 60u3y3 − 22y2
3u3 + 2u3y

2
3)du3 + (

1
4
u3 − 43u2

3y3 + 3u2
3y

2
3 + 120u2

3)dy3 = 0,

which clearly is a dicritical point of radial type, that is, l(H3, p4) = 2.
Let us reduce now the singularity of H3 in the projective plane at p5 := (0, 0) =

(x, y). The blowing up σ5 at (0, 0) is written in local charts:

σ5(x5, t5) = (x5, x5t5) = (x, y), σ5(u5, y5) = (u5y5, y5) = (x, y),

and since H3 is given by:

Ω(x, y) = (−5
4
y2 + 20xy − 60x3)dx + (−y +

3
4
xy + x2)dy = 0,

then

σ∗5(Ω(x, y)) = x5 · [(x2
5 +

3
4
x2

5t5 − x5t5)dt5 + (21x5t5 − 1
2
x5t

2
5 − 60x2

5 − t25)dx5],

that is l(H3, p5) = 1.
The singularity of the transformed foliation along E5 := σ−1

5 (p5) is just (0, 0) =
(x5, t5). The blowing up σ6 at p6 := (0, 0) = (x5, t5) is written in local charts:

σ6(x6, t6) = (x6, x6t6) = (x5, y5), σ6(u6, y6) = (u6y6, y2) = (x5, y5),

and
σ∗6 [(x2

5 +
3
4
x2

5t5 − x5t5)dt5 + (21x5t5 − 1
2
x5t

2
5 − 60x2

5 − t25)dx5] =

= x2
6 · [(−60 + 22t6 +

1
4
x6t

2
6 − 2t26)dx6 + (x6 +

3
4
x2

6t6 − x6t6)dt6],

that is l(H2, p6) = 2. There is a reduced singularity at r6 := (0, 6) = (u6, y6) (with
Camacho-Sad index − 5

2 relative to E6). Also there is a reduced singularity at
the intersection (0, 0) = (u6, y6) = E5 ∩ E6 (with Camacho-Sad index −2 relative
to E5). Also there is a non-reduced singularity of the transformed foliation at
(0, 5) = (x6, t6) ∈ E6.

After the linear change of coordinates (x6, t6) 7→ (x6, t6 − 5)), the foliation is
induced by:

η := (2t6 +
25
4

x6 +
1
4
x6t

2
6 − 2t26 +

10
4

x6t6)dx6+

+(−4x6 − x6t6 +
75
4

x2
6 +

3
4
x2

6t
2
6 +

30
4

x2
6t6)dt6.

The blowing up σ7 at p7 := (0, 5) = (x6, t6) is written locally as:

σ7(x7, t7) = (x7, x7t7) = (x6, y6), σ7(u7, y7) = (u7y7, y7) = (x6, y6),
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and

σ∗7η = x7 · [(15
4
− 2t7 +

75
4

x7 +
3
2
x7t7 +

31
4

x2
7t

2
7 − 2x7t

2
7 +

3
4
x3

7t
3
7)dx7+

+(−4x7 +
75
4

x2
7 − x2

7t7 +
30
4

x3
7t7 +

3
4
x4

7t
2
7)dt7],

that is, l(H3, p7) = 1.
There is a reduced singularity at (0, −25

8 ) = (x7, t7) (with Camacho-Sad index
−2 relative to E7. The non-reduced singularity of the transformed foliation is at
(0, 0) = (u7, y7), where the foliation is induced by

(−2u7 − 3u7y7 +
50
4

u2
7 +

85
4

u2
7y7 +

3
4
u2

7y
3
7 +

31
4

u2
7y

2
7)dy7+

+(2y7 − 2y2
7 +

25
4

u7y7 +
10
4

u7y
2
7 +

1
4
u7y

3
7)du7,

which is clearly a dicritical singularity of radial type; that is, l(H3, p8) = 2.
Let us reduce the singularity of H3 in the projective plane at ( 32

27 , 1024
81 ) = (x, y).

The blowing up σ9 at p9 = ( 32
27 , 1024

81 ) produces two singularities along E9 = σ−1
9 (p9);

one is a reduced singularity at r9 := (0, 0) = (x9, t9) with index −3 relative to E1

and a non-reduced singularity at (0, 320
9 ) = (x9, t9). It can be easily verified that

l(H3, p9) = 1.
Next, the blow up σ10 at p10 := (0, 320

9 ) = (x9, t9) produces two singularities
along E10 = σ−1

10 (p10). One is a reduced singularity at (0, 25) = (x10, t10) with index
−2 relative to E10 and a non-reduced singularity at infinity (0, 0) = (u10, y10). It is
easily verified that l(H3, p10) = 1. At last, it is easily verified that p11 := (0, 0) =
(u10, y10) is a dicritical point of radial type, that is, l(H3, p11) = 2.

At the point (1, 4) = (x, y) in the projective plane, H3 has a reduced singularity.
The quotient of eigenvalues of the linear part of a vector field inducing it is given
by −3+

√
5

2 .
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Instituto de Matemática Pura e Aplicada, Est. D. Castorina, 110, 22460-320, Rio de
Janeiro, RJ, Brazil

E-mail address: mendes@mat.ufrgs.br jvp@impa.br


