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Abstract:

The origin of Hodge theory goes back to many works on elliptic,
abelian and multiple integrals (periods). In particular, Picard
and Simart’s book "Théorie des fonctions algébriques de deux
variables indépendantes. Vol. I, II." published in 1897, 1906,
paved the road for modern Hodge theory. The first half of the
talk is mainly about these books, for instance, I am going to
explain how Lefschetz was puzzled with the computation of
Picard rank (by Picard and using periods) and this led him to
consider the homology classes of curves inside surfaces. This
was ultimately formulated in Lefschetz (1,1) theorem and then
the Hodge conjecture. In the second half of the talk I will
discuss periods of algebraic cycles and will give some
applications in identifying some components of the
Noether-Lefschetz and Hodge locus. The talk is based on my
book: A course in Hodge Theory: With Emphasis on Multiple
Integrals,
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From these books we have:Picard-Lefschetz theory,
Picard-Fuchs equations, Picard rank, Picard group.
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Georges Simart (1846-1921)

In Picard-Simart book he is introduced as ‘capitaine de frégate,
répétiteur a l’École Polytechnique’. In the preface of the same
book, which is only signed by Picard, one reads “Mon ami, M.
Simart, qui m’a déjà rendu de grands services dans la
publication de mon Traité d’Analyse, ayant bien voulu me
promettre son concours, a levé mes hésitations. J’ai traité cet
hiver dans mon cours de la Théorie des surfaces algébriques,
et nous avons, M. Simart et moi, rassemblé ces Leçons dans le
Tome premier, que nous publions aujourd’hui".



After many works on elliptic and abelian integrals by Augustin
Louis Cauchy (1789-1857), Niels Henrik Abel (1802-1829), Carl
Gustav Jacob Jacobi (1804-1851) and Georg Friedrich
Bernhard Riemann (1826-1866), Jules Henri Poincaré
(1854-1912), among many others, it was time to go to higher
dimensions.



The main aim of these books is to study the integrals:∫∫
P(x , y , z)dxdy

f ′z
, P, f ∈ C[x , y , z] (1)

and in general the integration of any meromorphic differential
form over ??.

In particular∫
Pdx1 ∧ dx2 ∧ · · · ∧ dxn+1

f k , P, f ∈ C[x1, x2, . . . , xn+1]. (2)



The main aim of these books is to study the integrals:∫∫
P(x , y , z)dxdy

f ′z
, P, f ∈ C[x , y , z] (1)

and in general the integration of any meromorphic differential
form over ??.In particular∫

Pdx1 ∧ dx2 ∧ · · · ∧ dxn+1

f k , P, f ∈ C[x1, x2, . . . , xn+1]. (2)



Picard gave the name ’period’ to these integrals.

“M. Picard a donné à ces integrales le nom de périodes; je ne
saurais l’en blâmer puisque cette dénomination lui a permis
d’exprimer dans un langage plus concis les intéressants
résultats auxquels il est parvenu. Mais je crois qu’il serait
fàcheux qu’elle s’introduisit définitivement dans la science et
qu’elle serait propre à engendrer de nombreuses confusions",
(H. Poincaré 1887).



Picard gave the name ’period’ to these integrals.
“M. Picard a donné à ces integrales le nom de périodes; je ne
saurais l’en blâmer puisque cette dénomination lui a permis
d’exprimer dans un langage plus concis les intéressants
résultats auxquels il est parvenu. Mais je crois qu’il serait
fàcheux qu’elle s’introduisit définitivement dans la science et
qu’elle serait propre à engendrer de nombreuses confusions",
(H. Poincaré 1887).



For any ’smooth’ projective variety X , and in particular a
hypersurface in Pn+1 given by f = 0:

1. The study of integration domain was developed into,
Poincaré’s Analysis Situs and later into singular
(co)homology theories (Hq(X ,Z),Hq(X ,Z)) and
homological algebra.

2. The study of integrands were developed into de Rham
cohomology (Hq

dR(X )), and later to many cohomology
theories in Algebraic Geometry.
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Origin of the Hodge conjecture

Figure: Pages 32 of G. Humbert (1859-1921), Théorie générale des surfaces hyperelliptiques, Journal de

mathématiques pures et appliquées 4e série, tome 9 (1893), p. 29-170.
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Riemann’s theta series:

Let a,b ∈ Rg and Hg be the genus g Siegel domain. It is the set
of g × g symmetric matrices τ over the complex numbers
whose imaginary part is positive definite. The Riemann theta

function θ
[
a
b

]
with characteristics (a,b) is the following

holomorphic function:

θ

[
a
b

]
: Cg ×Hg → C

θ

[
a
b

]
(z, τ) :=

∑
n∈Zg

exp
(

1
2

(n + a)t · τ · (n + a) + (n + a)t · (z + b)

)

Let Λ := {τm + n | m,n ∈ Zg} ∼= Z2g and Cg/Λ be the
corresponding complex compact torus.



Hyperelliptic surfaces:

Let us now consider g = 2. Let also θi , i = 1,2,3,4 be a
collection of linearly independent Riemann’s theta functions
with the same characteristics a,b. G. Humbert is talking about
the image X of the map:

C2/Λ→ P3, z 7→ [θ1; θ2; θ3; θ4]. (3)

This is an algebraic surface with singularities.



Algebraic Geometry of Humbert and many others around 1900
was limited to affine varieties and so instead of the projective
geometry notation, one was mainly interested on the surface

U :=
{

(x , y , z) ∈ C3 | f (x , y , z) = 0
}
⊂ X , (4)

where f is the polynomial relation between the following
quotient of theta series:

(x , y , z) = (
θ2(z, τ)

θ1(z, τ)
,
θ3(z, τ)

θ1(z, τ)
,
θ4(z, τ)

θ1(z, τ)
) (5)



Why such a complicated example? Why not simply the Fermat
surface:

X : xd + yd + zd + wd = 0.

Answer: At the time of Humbert and Picard we did know the
topology of C2/Λ: It is the product of four circles. But we did not
know the topology of a general surface and in particular Fermat
surface!



No more hyperelliptic surface:

In modern language Humbert and Picard studied singular
models for abelian surfaces: A purely algebraic approach to the
topic of equations for abelian varieties was introduced by
Mumford in a series of articles 1966, which in turn, are based
on many works of Baily, Cartier, Igusa, Siegel, Weil. It does not
seem to me that the contributions of Humbert and Picard as
founders of the subject is acknowledged in the modern
treatment of equations defining abelian varieties.



The modern meaning of hyperelliptic surface seems to appear
first in the work of Bombieri and Mumford in 1977. In a private
letter Mumford explains this: “I believe Enrico and I knew that
the word “hyperelliptic" had been used classically as a name for
abelian surfaces but we felt that this usage was no longer
followed, i.e. after Weil’s books, the term “abelian varieties" had
taken precedence. So the word “hyperelliptic" seemed to be a
reasonable term for this other class of surfaces."



Figure: S. Lefschetz, A page of mathematical autobiography. Bull. Amer. Math. Soc., 74:854–879, 1968.



Lefschetz puzzle:

Let us redefine X to be the abelian surface C2/Λ, let Y be the
subvariety of X which is the zero locus of θ1 (the curve at
infinity) and U := X\Y . From the long exact sequence of
U ⊂ X we get

H2(U) ↪→ H2(X ) → H0(Y ) ∼= Z
5 6 1

The second map is the intersection with Y . The homology class
of Y in X is a one dimensional subspace of H2(X ) and
1 = 6− 5.



Algebraic de Rham cohomology:

Picard proves that the the second algebraic de Rham
cohomology of U is of dimension 5:

dim H2
dR(U) = 5.

The algebraic de Rham cohomology is mainly attributed to A.
Grothendieck (1966). Grothendieck’s contribution is just a final
remark on a creation of a mathematical object! At the time
Picard computed this, neither de Rham nor Grothendicek was
born!
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Let us consider the projective space Pn+1 with the coordinates
[x0 : x1 : · · · : xn+1], a smooth hypersurface in Pn+1 given by
f = 0, where f is a homogeneous polynomial of degree d in
x0, x1, · · · , xn+1, and

ωi := Resi

(
x i ·

∑n+1
j=0 (−1)jxj dx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn+1

f k

)

with x i = x i0
0 · · · x

in+1
n+1, i0, i1, . . . , in+1 ∈ N0, k :=

n+2+
∑n+1

e=0 ie
d ∈ N,

and
Resi : Hn+1

dR (Pn+1 − X )
∼→ Hn

dR(X )0

is the residue map.
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After a theorem of Griffiths in 1970, we can introduce (n an
even number):

Definition
A topological cycle δ ∈ Hn(X ,Z) is called a Hodge cycle if∫

δ

ωi = 0, ∀i with
n + 2 +

∑n+1
e=0 ie

d
≤ n

2
.



Hodge Conjecture for hypersurfaces:

A cycle δ ∈ Hn(X ,Z) is Hodge if and only if there is an algebraic
cycle

Z :=
s∑

i=1

aiZi , dim(Zi) =
n
2
, ai ∈ Z

and a ∈ N such that
a · δ = [Z ].

If Picard were alive he would have formulated the Hodge
conjecture in this way!
The first two chapters of my book search for the origin of the
Hodge conjecture in the Picard-Simart Book.
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Lefschetz (1,1)-theorem in its original format:

On an algebraic surface X a 2-dimensional homology cycle δ is
the homology class of an algebraic curve if and only if∫

δ
ω = 0, (6)

for all holomorphic differential 2-forms in X .
For a smooth surface X ⊂ P3 the Z-module of Hodge cycles,
the Neron-Severi group and the Picard group are all the same.
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Why is the Hodge conjecture difficult?

“But the whole program [Grothendieck’s program on how to
prove the Weil conjectures] relied on finding enough algebraic
cycles on algebraic varieties, and on this question one has
made essentially no progress since the 1970s.... For the
proposed definition [of Grothendieck on a category of pure
motives] to be viable, one needs the existence of “enough”
algebraic cycles. On this question almost no progress has been
made, (P. Deligne 2014)....la construction de cycles algébriques
intéressants, les progrès ont été maigres, (P. Deligne 1994). "
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Fermat varieties:

Fermat variety of dimension n and degree d :

X d
n : xd

0 + xd
1 + · · ·+ xd

n+1 = 0. (7)

Fermat surface of degree d :

X d
2 : xd + yd + zd + wd = 0.



Well-known curves of the Fermat surface:

1. Linear curves:

x − ζ2dy = z − ζ2dw = 0.

2. Aoki-Shioda curves for 3 | d :{
x

d
3 + y

d
3 + z

d
3 = 0,

w3 − 3
3
d ζ d

3
xyz = 0

(8)

Other curves can be produced using the automorphism group
of the Fermat surface.
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Theorem (Schuett, Shioda, van Luijk, 2010)
If d ≤ 100 and (d ,6) = 1, then the Neron-Severi group of X is
generated by lines on X.

Theorem (Degtyarev, 2015)
For the above affirmation we only need the hypothesis d ≤ 4 or
(d ,6) = 1.

Theorem (Aoki 1988)
For d ≤ 11 lines together with Aoki-Shioda curves generate the
Neron-Severi group of X over Q.
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The lines and the Aoki-Shioda curves are not enough to
generate the Neron-Severi group of

X 12
2 : x12 + y12 + z12 + w12 = 0

In the literature we do not have a complete list of algebraic
curves which generate the Neron-Severi group of X 12

2 , (N. Aoki,
in a private letter has told me that he will soon publish an article
on this!)
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Periods of Hodge/algebraic cycles:
For a Hodge cycle δ ∈ Hn(X ,Z)0, we define its periods

pi :=
1

(2π
√
−1)

n
2

∫
δ

ωi , (9)

n+1∑
e=0

ie = (
n
2

+ 1)d − (n + 2).

Theorem (P. Deligne 1982)
If X and the algebraic cycle Z are defined over a field k ⊂ C
and δ = [Z ] then

pi ∈ k.

If X is the Fermat variety then pi ’s are in an abelian extension
of Q(ζd ).
This observation naturally leads us to the notion of absolute
Hodge cycles due to P. Deligne.
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Let us consider

Xt : xd
0 + xd

1 + · · ·+ xd
n+1 −

∑
j∈Id

tjx j = 0, (10)

where

Id := {j ∈ Nn+1
0 ,

n+1∑
e=0

je = d , 0 ≤ je ≤ d − 2}.

Here t = (tj , j ∈ Id ) ∈ T := C#Id and

X0 = X d
n .



Hodge and Noether-Lefschetz locus:
Let δt ∈ Hn(Xt ,Z), t ∈ (T,0) be a continous family of cycles
and δ0 be a Hodge cycle. Let also ω1, ω2, . . . , ωa be differential
forms as in the definition of a Hodge cycle.

Definition
The (analytic) Hodge locus passing through 0 and corresponding to δ
is the following local analytic scheme:

OVδ0
:= OT,0

/〈∫
δt

ω1,

∫
δt

ω2, · · · ,
∫
δt

ωa

〉
. (11)

The underlying analytic variety is:{
t ∈ (T,0)

∣∣∣∣∣
∫
δt

ω1 =

∫
δt

ω2 = · · · =

∫
δt

ωa = 0

}
. (12)

In the two dimensional case, that is dim(Xt ) = 2, Hodge locus is
usually called Noether-Lefschetz locus.
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Theorem
The Zariski tangent space of the Hodge locus Vδ0 passing
through the Fermat point 0 ∈ T and corresponding to the
Hodge cycle δ0 is given by ker([pi+j ]

t).

The origin of the above theorem lies in the so called
infinitesimal variation of Hodge structures (IVHS) of families of
projective varieties developed by P. Griffiths and his
collaborators in 1983. C. Voisin in her book in 2003 relates
IVHS with the Zariski tangent space of the Hodge locus. For
Fermat varieties one has to do further computations (done by
the author in 2015) to get this Theorem.
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Theorem (M. 2015)
For any smooth hypersurface of degree d and dimension n in a
Zariski neighborhood of the Fermat variety with d ≥ 2 + 4

n and
a linear projective space P

n
2 ⊂ X, deformations of P

n
2 as an

algebraic cycle and Hodge cycle are the same.

The proof of the above theorem reduces to the following: for
P

n
2 ⊂ X d

n and

pi :=
1

(2π
√
−1)

n
2

∫
P

n
2

ωi , (13)

with
n+1∑
e=0

ie = (
n
2

+ 1)d − (n + 2).

show that

rank([pi+j ]) =

(n
2 + d

d

)
− (

n
2

+ 1)2. (14)
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For further reading see my book:

A course in Hodge theory: with emphasis on multiple integrals

http://w3.impa.br/ hossein/myarticles/hodgetheory.pdf


