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Figure: Pages 32 of G. Humbert (1859-1921), Théorie générale des surfaces hyperelliptiques, Journal de

mathématiques pures et appliquées 4e série, tome 9 (1893), p. 29-170.



Riemann’s theta series:

Let a,b ∈ Rg and Hg be the genus g Siegel domain. It is the set
of g × g symmetric matrices τ over the complex numbers
whose imaginary part is positive definite. The Riemann theta

function θ
[
a
b

]
with characteristics (a,b) is the following

holomorphic function:

θ

[
a
b

]
: Cg ×Hg → C

θ

[
a
b

]
(z, τ) :=

∑
n∈Zg

exp
(

1
2

(n + a)t · τ · (n + a) + (n + a)t · (z + b)

)

Let Λ := {τm + n | m,n ∈ Zg} ∼= Z2g and Cg/Λ be the
corresponding complex compact torus.



Hyperelliptic surfaces:

Let us now consider g = 2. Let also θi , i = 1,2,3,4 be a
collection of linearly independent Riemann’s theta functions
with the same characteristics a,b. G. Humbert is talking about
the image X of the map:

C2/Λ→ P3, z 7→ [θ1; θ2; θ3; θ4]. (1)

This is an algebraic surface with singularities.



Algebraic Geometry of Humbert and many others around 1900
was limited to affine varieties and so instead of the projective
geometry notation, one was mainly interested on the surface

U :=
{

(x , y , z) ∈ C3 | f (x , y , z) = 0
}
⊂ X , (2)

where f is the polynomial relation between the following
quotient of theta series:

(x , y , z) = (
θ2(z, τ)

θ1(z, τ)
,
θ3(z, τ)

θ1(z, τ)
,
θ4(z, τ)

θ1(z, τ)
) (3)



Why such a complicated example? Why not simply the Fermat
surface:

X : xd + yd + zd + wd = 0.

Answer: At the time of Humbert and Picard we did know the
topology of C2/Λ: It is the product of four circles. But we did not
know the topology of a general surface and in particular Fermat
surface!



No more hyperelliptic surface:

In modern language Humbert and Picard studied singular
models for abelian surfaces: A purely algebraic approach to the
topic of equations for abelian varieties was introduced by
Mumford in a series of articles 1966, which in turn, are based
on many works of Baily, Cartier, Igusa, Siegel, Weil. It does not
seem to me that the contributions of Humbert and Picard as
founders of the subject is acknowledged in the modern
treatment of equations defining abelian varieties.



The modern meaning of hyperelliptic surface seems to appear
first in the work of Bombieri and Mumford in 1977. In a private
letter Mumford explains this: “I believe Enrico and I knew that
the word “hyperelliptic" had been used classically as a name for
abelian surfaces but we felt that this usage was no longer
followed, i.e. after Weil’s books, the term “abelian varieties" had
taken precedence. So the word “hyperelliptic" seemed to be a
reasonable term for this other class of surfaces."



Figure: S. Lefschetz, A page of mathematical autobiography. Bull. Amer. Math. Soc., 74:854–879, 1968.



Lefschetz puzzle:

Let us redefine X to be the abelian surface C2/Λ, let Y be the
subvariety of X which is the zero locus of θ1 (the curve at
infinity) and U := X\Y . From the long exact sequence of
U ⊂ X we get

H2(U) ↪→ H2(X ) → H0(Y ) ∼= Z
5 6 1

The second map is the intersection with Y . The homology class
of Y in X is a one dimensional subspace of H2(X ) and
1 = 6− 5.



Algebraic de Rham cohomology:

Picard proves that the the second algebraic de Rham
cohomology of U is of dimension 5:

dim H2
dR(U) = 5.

The algebraic de Rham cohomology is mainly attributed to A.
Grothendieck (1966). Grothendieck’s contribution is just a final
remark on a creation of a mathematical object! At the time
Picard computed this, neither de Rham nor Grothendicek was
born!



Algebraic de Rham cohomology:

Picard proves that the the second algebraic de Rham
cohomology of U is of dimension 5:

dim H2
dR(U) = 5.

The algebraic de Rham cohomology is mainly attributed to A.
Grothendieck (1966). Grothendieck’s contribution is just a final
remark on a creation of a mathematical object! At the time
Picard computed this, neither de Rham nor Grothendicek was
born!



Lefschetz (1,1)-theorem in its original format:

On an algebraic surface X a 2-dimensional homology cycle δ is
the homology class of an algebraic curve if and only if∫

δ
ω = 0, (4)

for all holomorphic differential 2-forms in X .

Definition
A cycle δ ∈ H2(X ) with the above property is called a Hodge cycle.

The Hodge conjecture is just the generalization of the above
theorem in higher dimensions.
For a smooth surface X ⊂ P3 the Z-module of Hodge cycles,
the Neron-Severi group and the Picard group are all the same.
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Let X be the Fermat surface given by

U : xd + yd + zd = 1.

in the affine coordinates. Nowadays we know that

dim H2(U) = (d − 1)3

dim H2(X ) = (d − 1)3 − (d − 1)2 + (d − 1) + 1

Lefschetz theorem in this case is: A 2-dimensional homology
cycle δ in X is the homology class of an algebraic curve if and
only if ∫

δ
xβ1yβ2zβ3(zdxdy − ydxdz + xdydz) = 0, (5)

for all β1, β2, β3 ∈ N ∪ {0} with β1 + β2 + β3 < d − 3.
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Computational Hodge conjecture:

Given a Hodge cycle δ ∈ H2(X ,Z), construct an algebraic cycle
[Z ] =

∑
Zi such that Z is homologous to δ.

This is still a challenging problem in dimension two where we
have Lefschetz’s theorem.



Well-known curves of the Fermat surface:

1. Linear curves:

x − ζ2dy = z − ζ2dw = 0.

2. Aoki-Shioda curves for 3 | d :{
x

d
3 + y

d
3 + z

d
3 = 0,

w3 − 3
3
d ζ d

3
xyz = 0

(6)

Other curves can be produced using the automorphism group
of the Fermat surface.
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Theorem (Schuett, Shioda, van Luijk, 2010)
If d ≤ 100 and (d ,6) = 1, then the Neron-Severi group of X is
generated by lines on X.

Theorem (Degtyarev, 2015)
For the above affirmation we only need the hypothesis d ≤ 4 or
(d ,6) = 1.

Theorem (Aoki 1988)
For d ≤ 11 lines together with Aoki-Shioda curves generate the
Neron-Severi group of X .
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The lines and the Aoki-Shioda curves are not enough to
generate the Neron-Severi group of

x12 + y12 + z12 + w12 = 0

In 2010 Aoki and Shioda produced other curves to find the
generators of the Neron-Severi group of X .
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“But the whole program [Grothendieck’s program on how to
prove the Weil conjectures] relied on finding enough algebraic
cycles on algebraic varieties, and on this question one has
made essentially no progress since the 1970s.... For the
proposed definition [of Grothendieck on a category of pure
motives] to be viable, one needs the existence of “enough”
algebraic cycles. On this question almost no progress has been
made, (P. Deligne 2014)....la construction de cycles algébriques
intéressants, les progrès ont été maigres, (P. Deligne 1994). "



For further reading see my book:

A course in Hodge theory: with emphasis on multiple integrals

http://w3.impa.br/ hossein/myarticles/hodgetheory.pdf


