Gauss-Manin connection in disguise: a search for new type of automorphic forms

Hossein Movasati

IMPA, Instituto de Matemática Pura e Aplicada, Brazil
www.impa.br/~hossein/

ICERM, 19-24 October 2015

From ICERM Semester Program on "Computational Aspects of the Langlands Program" we read:

From ICERM Semester Program on "Computational Aspects of the Langlands Program" we read:
...Despite its many successes, the Langlands program remains vague in many of its predictions, due in part to an absence of data to guide a precise formulation away from a few special cases.

What kind of data?

What kind of data?

1. Algebraic varieties and Diophantine equations.

What kind of data?

1. Algebraic varieties and Diophantine equations.
2. Modular and automorphic forms.

What kind of data?

1. Algebraic varieties and Diophantine equations.
2. Modular and automorphic forms.

From Hodge theory, or Complex Geometry, point of view, the first class is too big and the second class is too small.

What kind of data?

1. Algebraic varieties and Diophantine equations.
2. Modular and automorphic forms.

From Hodge theory, or Complex Geometry, point of view, the first class is too big and the second class is too small.

1. Non-rigid Calabi-Yau varieties
2. ???

What kind of data?

1. Algebraic varieties and Diophantine equations.
2. Modular and automorphic forms.

From Hodge theory, or Complex Geometry, point of view, the first class is too big and the second class is too small.

1. Non-rigid Calabi-Yau varieties
2. ???

The basic idea in constructing ??? lies in a better understanding the differential equations of classical modular and automorphic forms and then trying to generalize such differential equations. Therefore, ??? does not start with Hermitian symmetric domains, action of arithmetic groups etc.

1. The following link in my homepage What is Gauss-Manin Connection in Disguise?
2. Article: Modular-type functions attached to mirror quintic Calabi-Yau varieties, Math. Zeit. 2015
3. Book: Gauss-Manin Connection in Disguise: Calabi-Yau modular forms
4. Article: Gauss-Manin Connection in Disguise: Calabi-Yau threefolds (Together with M. Alim, E. Scheidegger, S.T. Yau)
5. These slides are hyperlinked and can be found in my homepage.

Applications？

Applications?

1. Physcist: What can you compute that I can't?

Applications?

1. Physcist: What can you compute that I can't?
2. Mathematician: What can you prove that I can't?

Applications?

1. Physcist: What can you compute that I can't?
2. Mathematician: What can you prove that I can't?
3. Developing mathematical theories just for the sake of their beauties (and one's ego).

A classical example (due to Ramanujan, Chazy,...):

$$
\left\{\begin{array}{l}
\dot{E}_{2}=\frac{1}{1^{2}}\left(E_{2}^{2}-E_{4}\right) \tag{1}\\
\dot{E}_{4}=\frac{1}{3}\left(E_{2} E_{4}-E_{6}\right) \quad \dot{*}=q \frac{\partial *}{\partial q} \\
\dot{E}_{6}=\frac{1}{2}\left(E_{2} E_{6}-E_{4}^{2}\right)
\end{array}\right.
$$

It is satisfied by the Eisenstein series:

$$
\begin{align*}
E_{2 i}(q):= & \left(1+b_{i} \sum_{n=1}^{\infty}\left(\sum_{d \mid n} d^{2 i-1}\right) q^{n}\right), i=1,2,3 . \tag{2}\\
& \left(b_{1}, b_{2}, b_{3}\right)=(-24,240,-504)
\end{align*}
$$

A non-classical example:

$$
\begin{aligned}
& \dot{t}_{0}=\frac{1}{t_{5}}\left(3750 t_{0}^{5}+t_{0} t_{3}-625 t_{4}\right) \\
& \dot{t}_{1}=\frac{1}{t_{5}}\left(-390625 t_{0}^{6}+3125 t_{0}^{4} t_{1}+390625 t_{0} t_{4}+t_{1} t_{3}\right) \\
& \dot{t}_{2}=\frac{1}{t_{5}}\left(-5859375 t_{0}^{7}-625 t_{0}^{5} t_{1}+6250 t_{0}^{4} t_{2}+5859375 t_{0}^{2} t_{4}+625 t_{1} t_{4}+2 t_{2} t_{3}\right) \\
& \dot{t}_{3}=\frac{1}{t_{5}}\left(-9765625 t_{0}^{8}-625 t_{0}^{5} t_{2}+9375 t_{0}^{4} t_{3}+9765625 t_{0}^{3} t_{4}+625 t_{2} t_{4}+3 t_{3}^{2}\right) \\
& \dot{t}_{4}=\frac{1}{t_{5}}\left(15625 t_{0}^{4} t_{4}+5 t_{3} t_{4}\right) \\
& \dot{t}_{5}=\frac{1}{t_{5}}\left(-625 t_{0}^{5} t_{6}+9375 t_{0}^{4} t_{5}+2 t_{3} t_{5}+625 t_{4} t_{6}\right) \\
& \dot{t}_{6}=\frac{1}{t_{5}}\left(9375 t_{0}^{4} t_{6}-3125 t_{0}^{3} t_{5}-2 t_{2} t_{5}+3 t_{3} t_{6}\right)
\end{aligned}
$$

$$
\dot{*}=5 q \frac{\partial *}{\partial q}
$$

$\frac{1}{24} t_{0}=\frac{1}{120}+q+175 q^{2}+117625 q^{3}+111784375 q^{4}+$ $126958105626^{5}+160715581780591 q^{6}+$ $218874699262438350 q^{7}+314179164066791400375 q^{8}+$ $469234842365062637809375 q^{9}+$
$722875994952367766020759550 q^{10}+O\left(q^{11}\right)$
$\frac{-1}{750} t_{1}=\frac{1}{30}+3 q+930 q^{2}+566375 q^{3}+526770000 q^{4}+$ $592132503858 q^{5}+745012928951258 q^{6}+$ $1010500474677945510 q^{7}+1446287695614437271000 q^{8}+$ $2155340222852696651995625 q^{9}+$ $3314709711759484241245738380 q^{10}+O\left(q^{11}\right)$
$t_{2}=\cdots$

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series,

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series,differential equations of modular forms,

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,functional equations,

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,functional equations, integrality of Fourier coefficients,

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,functional equations, integrality of Fourier coefficients,An strange cusp (conifold singularity),

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,functional equations, integrality of Fourier coefficients,An strange cusp (conifold singularity),Computing Gromov-Witten invariants,

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,functional equations, integrality of Fourier coefficients,An strange cusp (conifold singularity),Computing Gromov-Witten invariants, upper half plane, analytic continuation,

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,functional equations, integrality of Fourier coefficients,An strange cusp (conifold singularity),Computing Gromov-Witten invariants, upper half plane, analytic continuation,Hecke operators?,

Name of these objects: Modular-type functions?, Automorphic-type functions? Finally I adopted the name Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,functional equations, integrality of Fourier coefficients,An strange cusp (conifold singularity),Computing Gromov-Witten invariants, upper half plane, analytic continuation,Hecke operators?,Some product formulas,....

Name of these objects: Modular-type functions?,
Automorphic-type functions? Finally I adopted the name
Calabi-Yau modular form.
In the last 6 years I have tried to generalize many aspects of classical modular forms into the context of Calabi-Yau modular forms. This includes:
Relations with periods of algebraic varieties/hypergeometric series, differential equations of modular forms,complex and algebraic versions of modular forms,functional equations, integrality of Fourier coefficients,An strange cusp (conifold singularity),Computing Gromov-Witten invariants, upper half plane, analytic continuation,Hecke operators?,Some product formulas,....
Book: Gauss-Manin Connection in Disguise: Calabi-Yau modular forms

Gauss-Manin connection in disguise: Why should one compute the periods of algebraic cycles?

Hossein Movasati

IMPA, Instituto de Matemática Pura e Aplicada, Brazil
www.impa.br/~hossein/

ICERM, 19-24 October 2015

1. Article: Gauss-Manin connection in disguise: Noether-Lefschetz and Hodge loci
2. Book: A course in Hodge Theory: with emphasis on multilple integrals

These slides are hyperlinked and can be found in my homepage. Click on the link below to find an elementary problem.

An elementary problem

Hodge Conjecture：

Hodge Conjecture:

Let X be a smooth projective variety, m be an even number and $\delta \in H_{m}(X, \mathbb{Z})$ be a Hodge cycle, that is,

$$
\int_{\delta} \omega=0, \quad \forall \operatorname{closed}(p, q) \text {-form in } X \text { with } p>\frac{m}{2}
$$

Hodge Conjecture:

Let X be a smooth projective variety, m be an even number and $\delta \in H_{m}(X, \mathbb{Z})$ be a Hodge cycle, that is,

$$
\int_{\delta} \omega=0, \quad \forall \operatorname{closed}(p, q) \text {-form in } X \text { with } p>\frac{m}{2}
$$

Then there is an algebraic cycle

$$
Z=\sum n_{i}\left[Z_{i}\right], \quad n_{i} \in \mathbb{Z}, \quad \operatorname{dim}\left(Z_{i}\right)=\frac{m}{2}
$$

such that $\delta=[Z]:=\sum n_{i}\left[Z_{i}\right]$.

Infinitesimal Hodge Conjecture:

Infinitesimal Hodge Conjecture:

Let $\left\{X_{t}\right\}_{t \in T}$ be a family of smooth projective varieties, m be an even number and let $Z_{0} \subset X_{0}$ be a fixed algebraic cycle of dimension $\frac{m}{2}$. Let us assume that for a paprameter t the monodromy δ_{t} of $\delta_{0}=\left[Z_{0}\right]$ is a Hodge cycle.

Infinitesimal Hodge Conjecture:

Let $\left\{X_{t}\right\}_{t \in T}$ be a family of smooth projective varieties, m be an even number and let $Z_{0} \subset X_{0}$ be a fixed algebraic cycle of dimension $\frac{m}{2}$. Let us assume that for a paprameter t the monodromy δ_{t} of $\delta_{0}=\left[Z_{0}\right]$ is a Hodge cycle. Then there is an algebraic deformation $\left(X_{t}, Z_{t}\right)$ of $\left(X_{0}, Z_{0}\right)$ such that $\delta_{t}=\left[Z_{t}\right]$.

Complete intersections inside hypersurfaces

Complete intersections inside hypersurfaces

Let T be the parameter space of hypersurfaces of degree d in \mathbb{P}^{m+1}. Let also $X=X_{t}, t \in T$ be given by

$$
X: f\left(x_{0}, x_{1}, \cdots, x_{m+1}\right)=0
$$

Complete intersections inside hypersurfaces

Let T be the parameter space of hypersurfaces of degree d in \mathbb{P}^{m+1}. Let also $X=X_{t}, t \in T$ be given by

$$
X: f\left(x_{0}, x_{1}, \cdots, x_{m+1}\right)=0
$$

Fix integers $1 \leq d_{1}, d_{2}, \ldots d_{\frac{m}{2}+1} \leq d$ let $\check{T} \subset T$ be the parameter space of hypersurfaces with

$$
f=f_{1} g_{1}+\cdots+f_{\frac{m}{2}+1} g_{\frac{m}{2}+1}, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, \operatorname{deg}\left(g_{i}\right)=d-d_{i}
$$

Complete intersections inside hypersurfaces

Let T be the parameter space of hypersurfaces of degree d in \mathbb{P}^{m+1}. Let also $X=X_{t}, t \in T$ be given by

$$
X: f\left(x_{0}, x_{1}, \cdots, x_{m+1}\right)=0
$$

Fix integers $1 \leq d_{1}, d_{2}, \ldots d_{\frac{m}{2}+1} \leq d$ let $\check{T} \subset T$ be the parameter space of hypersurfaces with

$$
f=f_{1} g_{1}+\cdots+f_{\frac{m}{2}+1} g_{\frac{m}{2}+1}, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, \operatorname{deg}\left(g_{i}\right)=d-d_{i}
$$

We have the algebraic cycle

$$
Z:=\left\{f_{1}=f_{2}=\cdots=f_{\frac{m}{2}+1}=0\right\} \subset X
$$

Complete intersections inside hypersurfaces

Let T be the parameter space of hypersurfaces of degree d in \mathbb{P}^{m+1}. Let also $X=X_{t}, t \in T$ be given by

$$
X: f\left(x_{0}, x_{1}, \cdots, x_{m+1}\right)=0
$$

Fix integers $1 \leq d_{1}, d_{2}, \ldots d_{\frac{m}{2}+1} \leq d$ let $\check{T} \subset T$ be the parameter space of hypersurfaces with

$$
f=f_{1} g_{1}+\cdots+f_{\frac{m}{2}+1} g_{\frac{m}{2}+1}, \quad \operatorname{deg}\left(f_{i}\right)=d_{i}, \operatorname{deg}\left(g_{i}\right)=d-d_{i}
$$

We have the algebraic cycle

$$
Z:=\left\{f_{1}=f_{2}=\cdots=f_{\frac{m}{2}+1}=0\right\} \subset X
$$

Conjecture
Infinitesimal Hodge conjecture is true for pairs (X, Z) as above.

Theorem (Green, Voisin, 1991, $m=2$, M., 2015, $m \geq 2$) The infinitesimal Hodge cojecture is true for linear projective spaces inside hypersurfaces of degree d and dimension m with $d \geq 2+\frac{4}{m}$.
This is the case $d_{1}=d_{2}=\cdots=d_{\frac{m}{2}+1}=1$ in the previous slide.

Periods of Algebraic cycles

Periods of Algebraic cycles

Let
$\omega_{i}:=\operatorname{Residue}\left(\frac{x^{i} \cdot \sum_{j=0}^{m+1}(-1)^{j} x_{j} d x_{0} \wedge \cdots \wedge \widehat{d} x_{j} \wedge \cdots \wedge d x_{m+1}}{f^{k+1}}\right)$
with $k:=\frac{m+2+\sum_{e}^{m+1} i_{e}}{d}$. We have $\omega_{i} \in H_{\mathrm{dR}}^{m}(X)$. After Griffiths 1970, we know that:

Periods of Algebraic cycles

Let
$\omega_{i}:=\operatorname{Residue}\left(\frac{x^{i} \cdot \sum_{j=0}^{m+1}(-1)^{j} x_{j} d x_{0} \wedge \cdots \wedge \widehat{d} x_{j} \wedge \cdots \wedge d x_{m+1}}{f^{k+1}}\right)$
with $k:=\frac{m+2+\sum_{e=0}^{m+1} i_{e}}{d}$. We have $\omega_{i} \in H_{\mathrm{dR}}^{m}(X)$. After Griffiths 1970, we know that:

Definition
A cycle $\delta \in H_{m}(X, \mathbb{Z})$ is a Hodge cycle if

$$
\int_{\delta} \omega_{i}=0, \quad \forall i, \quad k \leq \frac{m}{2}
$$

Let δ be a Hodge cycle. Let also

$$
x_{i}:=\frac{1}{(2 \pi \sqrt{-1})^{m}} \int_{\delta} \omega_{i}, \sum_{e=0}^{m+1} i_{e}=\left(\frac{m}{2}+1\right) d-(m+2)
$$

Let δ be a Hodge cycle. Let also

$$
x_{i}:=\frac{1}{(2 \pi \sqrt{-1})^{m}} \int_{\delta} \omega_{i}, \sum_{e=0}^{m+1} i_{e}=\left(\frac{m}{2}+1\right) d-(m+2)
$$

(Deligne 1970) If δ is the homology class of an algebraic cycle and X is defined over an algebraically closed field $\mathrm{k} \subset \mathbb{C}$ then $x_{i} \in \mathrm{k}$.

Proposition (Voisin 2002+M. 2015)
Let X_{0} be the Fermat variety

$$
x_{0}: x_{0}^{d}+x_{1}^{d}+\cdots+x_{m+1}^{d}=0 .
$$

and let $\delta \in H_{m}\left(X_{0}, \mathbb{Z}\right)$ be a Hodge cycle. The rank of $\left[x_{i+j}\right]$ is the codimension of the tangent cone of the Hodge loci passing through $0 \in T$ and corresponding to $\delta \in H_{m}\left(X_{0}, \mathbb{Z}\right)$.

Proposition (Voisin 2002+M. 2015)
Let X_{0} be the Fermat variety

$$
x_{0}: x_{0}^{d}+x_{1}^{d}+\cdots+x_{m+1}^{d}=0 .
$$

and let $\delta \in H_{m}\left(X_{0}, \mathbb{Z}\right)$ be a Hodge cycle. The rank of $\left[x_{i+j}\right]$ is the codimension of the tangent cone of the Hodge loci passing through $0 \in T$ and corresponding to $\delta \in H_{m}\left(X_{0}, \mathbb{Z}\right)$.
Hodge cycles of Fermat variety was extensively studied by Shioda around 1970.

