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Abstract

In this article we introduce an ordinary differential equation associated to the
one parameter family of Calabi-Yau varieties which is mirror dual to the universal
family of smooth quintic three folds. It is satisfied by seven functions written in the
q-expansion form and the Yukawa coupling turns out to be rational in these functions.
We prove that these functions are algebraically independent over the field of complex
numbers, and hence, the algebra generated by such functions can be interpreted as the
theory of (quasi) modular forms attached to the one parameter family of Calabi-Yau
varieties. Our result is a reformulation and realization of a problem of Griffiths around
seventies on the existence of automorphic functions for the moduli of polarized Hodge
structures. It is a generalization of the Ramanujan differential equation satisfied by
three Eisenstein series.

1 Introduction

Modular and quasi-modular forms as generating functions count very unexpected objects
beyond the scope of analytic number theory. There are many examples for supporting
this fact. The Shimura-Taniyama conjecture, now the modularity theorem, states that the
generating function for counting Fp-rational points of an elliptic curve over Z for different
primes p, is essentially a modular form (see [32] for the case of semi-stable elliptic curves
and [5] for the case of all elliptic curves). Monstrous moonshine conjecture, now Borcherds
theorem, relates the coefficients of the j-function with the representation dimensions of
the monster group (see [4]). Counting ramified coverings of an elliptic curve with a fixed
ramification data leads us to quasi-modular forms (see [9] and [18]).

In the context of Algebraic Geometry, the theory of modular forms is attached to ellip-
tic curves and in a similar way the theory of Siegel and Hilbert modular forms is attached
to polarized abelian varieties. One may dream of other modular form theories attached
to other varieties of a fixed topological type. An attempt to formulate such theories was
first done around seventies by P. Griffiths in the framework of Hodge structures, see [15].
However, such a formulation leads us to the notion of automorphic cohomology which has
lost the generating function role of modular forms. Extending the algebra of any type of
modular forms into an algebra, which is closed under canonical derivations, seems to be
indispensable for further generalizations.

In 1991 there appeared the article [6] of Candelas, de la Ossa, Green and Parkes,
in which they calculated in the framework of mirror symmetry a generating function,
called the Yukawa coupling, which predicts the number of rational curves of a fixed degree
in a generic quintic three fold. From mathematical point of view, the finiteness is still
a conjecture carrying the name of Clemens (see [7]). Since then there was some effort
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to express the Yukawa coupling in terms of classical modular or quasi-modular forms,
however, there was no success. The Yukawa coupling is calculated from the periods of
a one parameter family of Calabi-Yau varieties and this suggests that there must be a
theory of (quasi) modular forms attached to this family (this is also predicted in [1], page
2). The main aim of the present text is to realize the construction of such a theory.

Consider the following ordinary differential equation in seven variables t0, t1, . . . , t4, t5, t6:

(1)



ṫ0 = 1
t5

(6
5 t

5
0 + 1

3125 t0t3 −
1
5 t4)

ṫ1 = 1
t5

(−125t60 + t40t1 + 125t0t4 + 1
3125 t1t3)

ṫ2 = 1
t5

(−1875t70 − 1
5 t

5
0t1 + 2t40t2 + 1875t20t4 + 1

5 t1t4 + 2
3125 t2t3)

ṫ3 = 1
t5

(−3125t80 − 1
5 t

5
0t2 + 3t40t3 + 3125t30t4 + 1

5 t2t4 + 3
3125 t

2
3)

ṫ4 = 1
t5

(5t40t4 + 1
625 t3t4)

ṫ5 = t6
t5

ṫ6 = (−72
5 t

8
0 − 24

3125 t
4
0t3 − 3

5 t
3
0t4 − 2

1953125 t
2
3) + t6

t5
(12t40 + 2

625 t3)

,

where

ṫ = 5q
∂t

∂q
.

We write each ti as a formal power series in q, ti =
∑∞

n=0 ti,nq
n and substitute in the

above differential equation and we see that it determines all the coefficients ti,n uniquely
with the initial values:

(2) t0,0 =
1

5
, t0,1 = 24, t4,0 = 0

and assuming that t5,0 6= 0. After substitution we get the two possibilities 0, −1
3125 for t5,0,

and ti,n, n ≥ 2 is given in terms of tj,m, j = 0, 1, . . . , 6, m < n. See §17 for the first

eleven coefficients of ti’s. We calculate the expression
−(t4−t50)2

625t35
and write it in Lambert

series form. It turns out that

−(t4 − t50)2

625t35
= 5 + 2875

q

1− q
+ 609250 · 22 q2

1− q2
+ · · ·+ ndd

3 qd

1− qd
+ · · · .

Let Wψ be the variety obtained by the resolution of singularities of the following quotient:

(3) Wψ := {[x0 : x1 : x2 : x3 : x4] ∈ P4 | x5
0 + x5

1 + x5
2 + x5

3 + x5
4 − 5ψx0x1x2x3x4 = 0}/G,

where G is the group

G := {(ζ1, ζ2, · · · , ζ5) | ζ5
i = 1, ζ1ζ2ζ3ζ4ζ5 = 1}

acting in a canonical way. The family Wψ is Calabi-Yau and it is mirror dual to the
universal family of quintic varieties in P4.

Theorem 1. The quantity
−(t4−t50)2

625t35
is the Yukawa coupling associated to the family of

Calabi-Yau varieties Wψ.

The q-expansion of the Yukawa coupling is calculated by Candelas, de la Ossa, Green,
Parkes in [6], see also [24]. Using physical arguments they showed that nd must be the
number of degree d rational curves inside a generic quintic three fold. However, from
mathematical point of view we have the Clemens conjecture which claims that there are

2



finite number of such curves for all d ∈ N. This conjecture is established for d ≤ 9
and remains open for d equal to 10 or bigger than it (see [17] and the references within
there). The Gromov-Witten invariants Nd can be calculated using the well-known formula
Nd =

∑
k|d

nd/k
k3

. The numbers nd are called instanton numbers or BPS degeneracies. The
C-algebra generated by ti’s can be considered as the theory of (quasi) modular forms
attached to the family Wψ. We prove:

Theorem 2. The functions ti, i = 0, 1, . . . , 6 are algebraically independent over C, this
means that there is no polynomial P in seven variables and with coefficients in C such
that P (t0, t1, · · · , t6) = 0.

Calculation of instanton numbers by our differential equation (1) or by using periods,
see [6, 24], or by constructing moduli spaces of maps from curves to projective spaces,
see [21], leads to the fact that they are rational numbers. It is conjectured that all
nd’s are integers (Gopakumar-Vafa conjecture, see [13]). Some partial results regarding
this conjecture is established recently by Kontsevich-Schwarz-Vologodsky (see [22]) and
Krattenthaler-Rivoal (see [23]).

All the quantities ti, i = 0, 1, . . . , 6 and q can be written in terms of the periods of the
family Wψ. The differential form

Ω =
x4dx0 ∧ dx1 ∧ dx2

∂Q
∂x3

,

where Q is the defining polynomial of Wψ, induces a holomorphic 3-form in Wψ which
we denote by the same letter Ω. Note that 5ψΩ is the standard choice of a holomorphic
differential 3-form on Wψ (see [6], p. 29). Let also δ1, δ2, δ3, δ4 be a particular basis of
H3(Wψ,Q) which will be explained in §11, and

xij =
∂j−1

∂ψj−1

∫
δi

Ω, i, j = 1, 2, 3, 4.

Theorem 3. The q-expansion of ti’s are convergent and if we set q = e
2πi

x21
x11 then

t0 = a−3ψx11

t1 = a−6625x11

(
5ψ3x12 + 5ψ4x13 + (ψ5 − 1)x14

)
t2 = a−9(−625)x2

11

(
5ψ3x11 + (ψ5 − 1)x13

)
t3 = a−12625x3

11

(
−5ψ4x11 + (ψ5 − 1)x12

)
t4 = a−15x5

11

t5 = a−11−1

5
(ψ5 − 1)x2

11 (x12x21 − x11x22)

t6 = a−23 1

25
(ψ5 − 1)x5

11

(
−5ψ4x11x12x21 − 2(ψ5 − 1)x2

12x21 − (ψ5 − 1)x11x13x21+

5ψ4x2
11x22 + 2(ψ5 − 1)x11x12x22 + (ψ5 − 1)x2

11x23

)
,

where a = 2πi
5 .

Once all the above quantities are given, using the Picard-Fuchs of xi1’s, see (11), one
can check easily that they satisfy the ordinary differential equation (1). However, how we
have calculated them, and in particular moduli interpretation of ti, i = 0, 1, . . . , 6, will be
explained throughout the present text.
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This work can be considered as a realization of a problem of Griffiths around 1970’s
on the automorphic form theory for the moduli of polarized Hodge structures, see [15]. In
our case H3(Wψ,C) is of dimension 4 and it carries a Hodge decomposition with Hodge
numbers h30 = h21 = h12 = h03 = 1. As far as I know, this is the first case of automorphic
function theory for families of varieties for which the corresponding Griffiths period domain
is not Hermitian symmetric. It would be of interest to see how the results of this paper
fit into the automorphic cohomology theory of Griffiths or vice versa.

Here, I would like to say some words about the methods used in the present text
and whether one can apply them to other families of varieties. We construct affine coor-
dinates for the moduli of the variety Wψ enhanced with elements in its third de Rham
cohomology, see §3, §6 and §16. Such a moduli turns out to be of dimension seven and
such coordinates, say ti, i = 0, 1, . . . , 6, have certain automorphic properties with respect
to the action of an algebraic group (the action of discrete groups in the classical theory
of automorphic functions is replaced with the action of algebraic groups). We use the
Picard-Fuchs equation of the periods of Ω and calculate the Gauss-Manin connection (see
for instance [20]) of the universal family of Calabi-Yau varieties over the mentioned moduli
space. The ordinary differential equation (1), seen as a vector field on the moduli space,
has some nice properties with respect to the Gauss-Manin connection which determines it
uniquely. A differential equation of type (1) can be introduced for other type of varieties,
see [27], however, whether it has a particular solution with a rich enumerative geometry
behind, depends strongly on some integral monodromy conditions, see §9, §8 and §11. For
the moment I suspect that the methods introduced in this article can be generalized to
arbitrary families of Calabi-Yau varieties and even to some other cases where the geometry
is absent, see for instance the list of Calabi-Yau operators in [3, 31] and a table of mirror
consistent monodromy representations in [10]. Since the theory of Siegel modular forms
is well developed and in light of the recent work [8], see also the references within there,
the case of K3 surfaces is quite promising. For local Calabi-Yau manifolds we need Siegel
modular forms and this is explained in [1].

Here, I would like to discuss about the physics underlying the mathematical results
and calculations of the present text. Higher genus topological string partition functions
Fg(t), g ≥ 1 and their calculations play an important role in quantum field theory. Mir-
ror symmetry conjecture leads to directly calculable predictions for the functions Fg for
Calabi-Yau varieties using the periods of the mirror manifold. To understand better the
importance of the quantities t0, t1, . . . , t6 in quantum field theory, one has to understand
the role of three classical Eisenstein series in the calculation of partition functions for
elliptic curves (for a detailed discussion see [9]). The original definition of partition func-
tions Fg in quantum Yang-Mills theory does not calculate them explicitly. In the case
of elliptic curves M. R. Douglas in [11] finds explicit calculable formulas for Fg in terms
of generalized theta functions. This leads in a natural way to the polynomial structure
of partition functions in terms of three Eisenstein series. Since we have the Ramanujan
differential equation between Eisenstein series, we conclude that derivatives of partition
functions in the Kähler modulus have still such polynomial structures, and hence, they
can be calculated in an effective way. In the case of mirror symmetry for quintic hyper-
surfaces the polynomial structure of partition functions are described by Yamaguchi and
Yau in [33] (see also [2, 16] for further generalization of their results for other type of
Calabi-Yau varieties). They show that partition functions are homogeneous polynomi-
als in five quantities. A simple comparison of the period expressions in Theorem 3 and
those of [33] end of §3.3, shows that these quantities can be computed explicitly in terms
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of ti, i = 0, 1, . . . , 7. In fact, Theorem 2 implies that five is the minimum number of
generators for the partition functions. The particular appearance of t5 in the differential
equation (1) together with Theorem 3 imply that apart from the τ -frame, where in our
case τ := x21

x11
, and ψ-frame in the mirror manifold, we have a y-frame which is given by

∂τ
∂y = 1

t6
. Looking ti, i = 0, . . . , 4’s as functions in y we have an ordinary differential

equation in dimension five which is essentially the first five lines of (1) without the factor
1
t6

. Using the result of Yamaguchi and Yau, this completely describes the polynomial and
differential structure of the partition functions in the y-frame. I am not aware of any
significance of the physical interpretation of the y-frame. Theorem 2 says that in order to
understand the differential structure of partition functions in the τ -frame we need exactly
seven functions. The ordinary differential equation in the y-frame will not result in the
calculation of instanton type expansions of ti’s as we have explained in the beginning of
Introduction. The quantities t5 and t6 are necessary for such calculations.

The monodromy group Γ of the mirror manifold acts naturally and non trivially on
the Kähler modulus τ and this leads to the modular properties of the partition functions
with respect to Γ. From physical point of view this action is important and it describes
the interchange of large area with small area which is a well-known example of the so
called duality transformation in string theory (see [12]). In the case of elliptic curves this
action is described in terms of the classical functional equations of Eisenstein series, and
hence any polynomial of them (see [9]). In order to understand the modular properties of
partition functions attached to quintic Calabi-Yau manifolds, we have to understand the
modular properties of ti’s. The modular properties of ti’s are first described in terms of
the action of an algebraic group, and then, using the period map this is translated into
the modular properties of ti’s with respect to Γ, see §17.

We have calculated the differential equation (1) and the first coefficients of ti by Sin-
gular, see [14]. The reader who does not want to calculate everything by his own effort
can obtain the corresponding Singular code from my web page.2

In the final steps of the present article Charles Doran informed me of his joint article
[8] and the results obtained by Yamaguchi and Yau in [33]. Here, I would like to thank him
for his interest. I would also like to thank the referee whose comments and suggestions
improved the paper and who introduced me with the article [1]. Finally, sincere thanks
goes to Satoshi Yamaguchi who informed me about further developments [2, 16] of his
results with Prof. Yau.

2 Quasi-modular forms

The differential equation (1) is a generalization of the Ramanujan differential equation

(4)


ġ1 = g2

1 − 1
12g2

ġ2 = 4g1g2 − 6g3

ġ3 = 6g1g3 − 1
3g

2
2

ġ = 12q
∂g

∂q

which is satisfied by the Eisenstein series:

(5) gi = ak

(
1 + bk

∞∑
d=1

d2k−1 qd

1− qd
)
, k = 1, 2, 3,

2w3.impa.br/∼hossein/manyfiles/singular-haftarticle.txt
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where
(b1, b2, b3) = (−24, 240,−504), (a1, a2, a3) = (1, 12, 8).

We have calculated (1) using the Gauss-Manin connection of the family Wψ which is
essentially the Picard-Fuchs differential equation of the holomorphic differential form of
the family Wψ. This is done in a similar way as we calculate (4) from the Gauss-Manin
connection of a family of elliptic curves, see [25, 26]. The general theory of differential
equations of type (1) and (4) is developed in [27]. Relations between the Gauss-Manin
connection and Eisenstein series appear in the appendix of [19]. Let g1, g2, g3 be the
Eisenstein series (5). The C-algebra C[g1, g2, g3] is freely generated by g1, g2, g3. With
deg(gi) = i, i = 1, 2, 3, its homogeneous pieces are quasi-modular forms over SL(2,Z). It
can be shown that any other quasi-modular form for subgroups of SL(2,Z) with finite
index, is in the algebraic closure of C(g1, g2, g3).

3 Moduli space, I

In the affine coordinates x0 = 1, the variety Wψ is given by:

{(x1, x2, x3, x4) ∈ C4 | f = 0}/G,

where
f = −z − x5

1 − x5
2 − x5

3 − x5
4 + 5x1x2x3x4

and we have introduced a new parameter z := ψ−5. We also use W1,z to denote the variety
Wψ. For z = 0, 1,∞ the variety W1,z is singular and for all others it is a smooth variety
of complex dimension 3. From now on, by W1,z we mean a smooth one. Up to constant
there is a unique holomorphic three form on W1,z which is given by

η =
dx1 ∧ dx2 ∧ dx3 ∧ dx4

df
.

Note that the pair (W1,z, 5η) is isomorphic to (Wψ, 5ψΩ), with Ω as in the Introduction.
The later is used in [6] p. 29. The third de Rham cohomology of W1,z, namely H3

dR(W1,z),
carries a Hodge decomposition with Hodge numbers h30 = h21 = h12 = h03 = 1. By
Serre duality H2(W1,z,Ω

1) ∼= H1(W1,z,Θ), where Ω1 (rep. Θ) is the sheaf of holomorphic
differential 1-forms (resp. vector fields) on W1,z. Since h21 = dimCH

2(W1,z,Ω
1) = 1, the

deformation space of W1,z is one dimensional. This means that W1,z can be deformed only
through the parameter z. In fact z is the classifying function of such varieties. Note that
the finite values of z does not cover the smooth variety Wψ, ψ = 0.

Let us take the polynomial ring C[t0, t4] in two variables t0, t4 (the variables t1, t2 and
t3 will appear later). It can be seen easily that the moduli S of the pairs (W,ω), where
W is as above and ω is a holomorphic differential form on W , is isomorphic to

S ∼= C2\{(t50 − t4)t4 = 0},

where we send the pair (W1,z, aη) to (t0, t4) := (a−1, za−5). The multiplicative group
Gm := C∗ acts on S by:

(W,ω) • k = (W,k−1ω), k ∈ Gm, (W,ω) ∈ S.

In coordinates (t0, t4) this corresponds to

(6) (t0, t4) • k = (kt0, k
5t4), (t0, t4) ∈ S, k ∈ Gm.
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We denote by (Wt0,t4 , ω1) the pair (W
1,
t4
t50

, t−1
0 η). The one parameter family W1,z (resp.

Wψ) can be recovered by putting t0 = 1 and t4 = z (resp. t0 = ψ and t4 = 1). In fact, the
pair (Wt0,t4 , ω1) in the affine chart x0 = 1 is given by:

(7)

(
{ft0,t4(x) = 0}/G, dx1 ∧ dx2 ∧ dx3 ∧ dx4

dft0,t4

)
,

where
ft0,t4 := −t4 − x5

1 − x5
2 − x5

3 − x5
4 + 5t0x1x2x3x4.

4 Gauss-Manin connection, I

We would like to calculate the Gauss-Manin connection

∇ : H3
dR(W/S)→ Ω1

S ⊗OS H
3
dR(W/S).

of the two parameter proper family of varieties Wt0,t4 , (t0, t4) ∈ S. By abuse of notation
we use ∂

∂ti
, i = 0, 4 instead of ∇ ∂

∂ti

. We calculate ∇ with respect to the basis

ωi =
∂i−1

∂ti−1
0

(ω1), i = 1, 2, 3, 4

of global sections of H3
dR(W/S). For this purpose we return back to the one parameter

case. We set t0 = 1 and t4 = z and calculate the Picard-Fuchs equation of η with respect
to the parameter z:

∂4η

∂z4
=

4∑
i=1

ai(z)
∂i−1η

∂zi−1
modulo relatively exact forms.

This is in fact the linear differential equation

(8) I ′′′′ =
−24

625z4 − 625z3
I +
−24z + 5

5z4 − 5z3
I ′ +

−72z + 35

5z3 − 5z2
I ′′ +

−8z + 6

z2 − z
I ′′′

which is calculated in [6], see also [27] for some algorithms which calculate such differential
equations. It is satisfied by the periods I(z) =

∫
δz
η, δ ∈ H3(W1,z,Q) of the differential

form η on the the family W1,z. In the basis ∂iη
∂zi
, i = 0, 1, 2, 3 the Gauss-Manin connection

matrix has the form

(9) A(z)dz :=


0 1 0 0
0 0 1 0
0 0 0 1

a1(z) a2(z) a3(z) a4(z)

 dz.

Now, consider the identity map

g : W(t0,t4) →W1,z,

which satisfies g∗η = t0ω1. Under this map

∂

∂z
=
−1

5

t60
t4

∂

∂t0

(
= t50

∂

∂t4

)
.
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From these two equalities we obtain a matrix S = S(t0, t4) such that

[η,
∂η

∂z
,
∂2η

∂z2
,
∂3η1

∂z3
]t = S−1[ω1, ω2, ω3, ω4]t,

where t denotes the transpose of matrices, and the Gauss-Manin connection in the basis
ωi, i = 1, 2, 3, 4 is: (

dS + S ·A(
t4
t50

) · d(
t4
t50

)

)
· S−1

which is the following matrix after doing explicit calculations:

(10)



− 1
5t4

dt4 dt0 +
−t0
5t4

dt4 0 0

0 −2
5t4

dt4 dt0 +
−t0
5t4

dt4 0

0 0 −3
5t4

dt4 dt0 +
−t0
5t4

dt4

−t0
t50−t4

dt0 +
t20

5t50t4−5t24

dt4
−15t20
t50−t4

dt0 +
3t30

t50t4−t24

dt4
−25t30
t50−t4

dt0 +
5t40

t50t4−t24

dt4
−10t40
t50−t4

dt0 +
6t50+4t4

5t50t4−5t24

dt4



From the above matrix or directly from (8) one can check that the periods xi1, i = 1, 2, 3, 4
in the Introduction satisfy the Picard-Fuch equation:

(11) I ′′′′ =
−ψ

ψ5 − 1
I +
−15ψ2

ψ5 − 1
I ′ +

−25ψ3

ψ5 − 1
I ′′ +

−10ψ4

ψ5 − 1
I ′′′, ′ =

∂

∂ψ
.

5 Intersection form and Hodge filtration

For ω, α ∈ H3
dR(Wt0,t4) let

〈ω, α〉 :=
1

(2πi)3

∫
Wt0,t4

ω ∪ α.

This is Poincaré dual to the intersection form in H3(Wt0,t4 ,Q). In H3
dR(Wt0,t4) we have

the Hodge filtration

{0} = F 4 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 = H3
dR(Wt0,t4), dimC(F i) = 4− i.

There is a relation between the Hodge filtration and the intersection form which is given
by the following collection of equalities:

〈F i, F j〉 = 0, i+ j ≥ 4.

The Griffiths transversality is a property combining the Gauss-Manin connection and the
Hodge filtration. It says that the Gauss-Manin connection sends F i to Ω1

S ⊗ F i−1 for
i = 1, 2, 3. Using this we conclude that:

ωi ∈ F 4−i, i = 1, 2, 3, 4.

Proposition 1. The intersection form in the basis ωi is:

[〈ωi, ωj〉] =


0 0 0 1

625(t4 − t50)−1

0 0 − 1
625(t4 − t50)−1 − 1

125 t
4
0(t4 − t50)−2

0 1
625(t4 − t50)−1 0 1

125 t
3
0(t4 − t50)−2

− 1
625(t4 − t50)−1 1

125 t
4
0(t4 − t50)−2 − 1

125 t
3
0(t4 − t50)−2 0
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Proof. Let Ω be the differential form ω1 with restricted parameters t0 = ψ and t4 = 1.

We have 〈5ψΩ, ∂
3(5ψΩ)
∂3ψ

〉 = 1
52

ψ2

1−ψ5 (see [6], (4.6)). From this we get:

(12) 〈ω1, ω4〉 = 5−4 1

t4 − t50
.

The corresponding calculations are as follows: In (t0, t4) coordinates we have ψ = t0t
− 1

5
4

and ∂
∂ψ = t

1
5
4

∂
∂t0

and

〈ψΩ,
∂3ψη̃

∂3ψ
〉 = 〈t0ω1, (t

1
5
4

∂

∂t0
)(3)(t0ω1)〉

= 〈t0ω1, t0t
3
5
4 ω4〉 = t20t

3
5
4 〈ω1, ω4〉.

From another side 1
52

ψ2

1−ψ5 = 1
52

t20t
3
5
4

t4−t50
.

We make the derivation of the equalities 〈ω1, ω3〉 = 0 and (12) with respect to t0 and
use the Picard-Fuchs equation of ω1 with respect to the parameter t0 and with t4 fixed:

∂ω4

∂t0
= M41ω1 +M42ω2 +M43ω3 +M44ω4

Here, Mij is the (i, j)-entry of (10) after setting dt4 = 0, dt0 = 1. We get

〈ω2, ω3〉 = −〈ω1, ω4〉, 〈ω2, ω4〉 =
∂〈ω1, ω4〉
∂t0

−M44〈ω1, ω4〉

Derivating further the second equality we get:

〈ω3, ω4〉 =
∂〈ω2, ω4〉
∂t0

−M43〈ω2, ω3〉 −M44〈ω2, ω4〉.

6 Moduli space, II

Let T be the moduli of pairs (W,ω), where W is a Calabi-Yau variety as before and
ω ∈ H3

dR(W )\F 1 and F 1 is the biggest non trivial piece of the Hodge filtration of H3
dR(W ).

In this section, we construct good affine coordinates for the moduli space T .
Let Gm be the multiplicative group (C − {0}, ·) and let Ga be the additive group

(C,+). Both these algebraic groups act on the moduli spaces T :

(W,ω) • k = (W,kω), k ∈ Gm, (W,ω) ∈ T,

(W,ω) • k = (W,ω + kω′), k ∈ Ga, (W,ω) ∈ T,
where ω′ is uniquely determined by 〈ω′, ω〉 = 1, ω′ ∈ F 3. We would like to have affine
coordinates (t0, t1, t2, t3, t4) for T such that;

1. We have a canonical map

π : T → S, (W,ω) 7→ (W,ω′),

where ω′ is determined uniquely by 〈ω′, ω〉 = 1, ω′ ∈ F 3. In terms of the coordinates
ti’s it is just the projection on t0, t4 coordinates.

9



2. With respect to the action of Gm, ti’s behave as below:

ti • k = ki+1ti, i = 0, 1, . . . , 4.

3. With respect to the action of Ga, ti’s behave as below:

ti • k = ti, i = 0, 2, 3, 4, k ∈ Ga,

t1 • k = t1 + k, k ∈ Ga.

In order to construct ti’s we take the family Wt0,t4 as before and three new variable t1, t2, t3.
One can verify easily that

{(t0, t1, t2, t3, t4) ∈ C5 | t4(t4 − t50) 6= 0} ∼= T,

(t0, t1, t2, t3, t4) 7→ (Wt0,tn+1 , ω),

where

(13) ω = t1ω1 + t2ω2 + t3ω3 +
ω4

〈ω1, ω4〉
.

7 Gauss-Manin connection, II

For the five parameter family Wt, t := (t0, t1, t2, t3, t4) ∈ T , we calculate the differential
forms αi, i = 1, 2, 3, 4 in T which are defined by the equality:

∇ω =
4∑
i=1

αi ⊗ ωi,

where ω is defined in (13), and we check that the Q(t) vector space spanned by αi is
exactly of dimension 4 and so up to multiplication by a rational function in Q(t) there is
a unique vector field Ra which satisfies

(14) αi(Ra) = 0, i = 1, 2, 3, 4

or equivalently ∇Raω = 0. We calculate this vector field and get the following expression:

Ra = (
6

5
t50 +

1

3125
t0t3 −

1

5
t4)

∂

∂t0
+ (−125t60 + t40t1 + 125t0t4 +

1

3125
t1t3)

∂

∂t1

+(−1875t70 −
1

5
t50t1 + 2t40t2 + 1875t20t4 +

1

5
t1t4 +

2

3125
t2t3)

∂

∂t2
+

(−3125t80 −
1

5
t50t2 + 3t40t3 + 3125t30t4 +

1

5
t2t4 +

3

3125
t23)

∂

∂t3
+ (5t40t4 +

1

625
t3t4)

∂

∂t4
.

This appears in the first five lines of the ordinary differential equation (1). The other
pieces of this differential equation has to do with the fact that the choice of Ra is not
unique. Let

α :=
t0dt4 − 5t4dt0

(t4 − t50)t4
.
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The vector field Ra turns to be unique after putting the condition

(15) α(Ra) = 1

We have calculated Ra from (15) and (14). The choice of α up to multiplication by a
rational function is canonical (see bellow). However, choosing such a rational function
does no seem to be canonical.

Proposition 2. There is a unique basis ω̃i, i = 1, 2, 3, 4 of H3
dR(Wt), t ∈ T such that

1. It is compatible with the Hodge filtration, i.e. ω̃i ∈ F 4−i\F 5−i.

2. ω̃4 = ω and 〈ω̃1, ω̃4〉 = 1.

3. The Gauss-Manin connection matrix A of the family W → T in the mentioned basis
is of the form

A =


∗ α 0 0
∗ ∗ α 0
∗ ∗ ∗ b4α
∗ ∗ ∗ ∗


and

A(Ra) =


0 1 0 0
0 0 1 0
0 b2 b3 b4
0 0 0 0


where b2, b3, b4 ∈ C[t].

Our proof of the above proposition is algorithmic and in fact we calculate bi’s

b2 = −72

5
t80 −

24

3125
t40t3 −

3

5
t30t4 −

2

1953125
t23

b3 = 12t40 +
2

625
t3, b4 = − 1

57
(t50 − t4)2

and ω̃i’s:

ω̃1 = ω1, ω̃2 = (−t40 −
1

3125
t3)ω1 + (

1

5
t50 −

1

5
t4)ω2, ω̃4 = ω

ω̃3 := (−14

5
t80 +

1

15625
t50t2 −

1

625
t40t3 −

1

5
t30t4 −

1

15625
t2t4 −

2

9765625
t23)ω1+

(
3

5
t90 +

2

15625
t50t3 −

3

5
t40t4 −

2

15625
t3t4)ω2 + (

1

25
t10
0 −

2

25
t50t4 +

1

25
t24)ω3.

The polynomials b2 and b3 appear in the last line of the ordinary differential equation (1).

Proof. The equalities in the second item and ω̃1 ∈ F 3 determine both ω̃1 = ω1, ω̃4 = ω
uniquely. We first take the 3-forms ω̃i = ωi, i = 2, 3 as in the previous section and write
the Gauss-Manin connection of the five parameter family of Calabi-Yau varieties Wt, t ∈ T
in the basis ω̃i, i = 1, 2, 3, 4:

∇[ω̃i]4×1 = [αij ]4×4[ω̃i]4×1.

We explain how to modify ω̃2 and ω̃3 and get the basis in the announcement of the
proposition. Let R be the Q(t) vector space generated by α4,i, i = 1, 2, . . . , 4. It does not

11



depend on the choice of the basis ω̃i and we already mentioned that it is of dimension 4.
If we replace ω̃2 by ω̃2 + aω̃1 then α11 is replaced by α11 − aα12. Modulo R the space of
differential forms on T is one dimensional and since α12 6∈ R, we choose a in such a way
that α11 − aα12 ∈ R. We do this and so we can assume that α11 ∈ R. The result of our
calculations shows that α12 is a multiple of t0dt4 − 5t4dt0. We replace ω2 by rω̃2 with
some r ∈ Q(t) and get the desired form for α12. We repeat the same procedure for ω̃3. In
this step we replace ω̃3 by r3ω̃3 + r2ω̃2 + r1ω̃1 with some r1, r2, r3 ∈ Q(t).

8 Polynomial Relations between periods

We take a basis δ1, δ2, δ3, δ4 ∈ H3(Wt0,t4 ,Q) such that the intersection form in this basis
is given by:

(16) Ψ := [〈δi, δj〉] =


0 0 0 −6

5
0 0 2

5 0
0 −2

5 0 2
6
5 0 −2 0

 .

It is also convenient to use the basis [δ̃1, δ̃2, δ̃3, δ̃4] = [δ1, δ2, δ3, δ4]Ψ−1. In this basis the
intersection form is [〈δ̃i, δ̃j〉] = Ψ−t. Let ωi, i = 1, 2, 3, 4 be the basis of the de Rham
cohomology H3

dR(Wt0,t4) constructed in §4 and let δ̃pi ∈ H3(Wt0,t4 ,Q) be the Poincaré
dual of δ̃i, that is, it is defined by the property

∫
δ δ̃

p
i = 〈δ, δ̃i〉 for all δ ∈ H3(Wt0,t4 ,Q). If

we write ωi in terms of δ̃pi what we get is:

[ω1, ω2, ω3, ω4] = [δ̃p1 , δ̃
p
2 , δ̃

p
3 , δ̃

p
4 ][

∫
δi

ωj ]

that is, the coefficients of the base change matrix are the periods of ωi’s over δi’s and
not δ̃i’s. The matrix [

∫
δi
ωj ] is called the period matrix associated to the basis ωi of

H3
dR(Wt0,t4) and the basis δi of H3(W,Q). We have

(17) [〈ωi, ωj〉] = [

∫
δi

ωj ]
tΨ−t[

∫
δi

ωj ].

Taking the determinant of this equality we can calculate det([
∫
δi
ωj ]) up to sign:

(18) det(pm) =
12

510

1

(t4 − t50)2
.

There is another effective way to calculate this determinant without the sign ambiguity.
For simplicity, we use the restricted parameters t4 = 1 and t0 = ψ and the notation
xij :=

∫
δi
ωj as in the Introduction. Proposition 1 and the equality (17) gives us 6 non
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trivial relations between xij ’s:

0 = −25

6
x12x21 +

25

6
x11x22 +

5

2
x22x31 −

5

2
x21x32 −

5

6
x12x41 +

5

6
x11x42

0 = −25

6
x13x21 +

25

6
x11x23 +

5

2
x23x31 −

5

2
x21x33 −

5

6
x13x41 +

5

6
x11x43

0 = −25

6
x14x21 +

25

6
x11x24 +

5

2
x24x31 −

5

2
x21x34 −

5

6
x14x41 +

5

6
x11x44 −

1

625(ψ5 − 1)

0 = −25

6
x13x22 +

25

6
x12x23 +

5

2
x23x32 −

5

2
x22x33 −

5

6
x13x42 +

5

6
x12x43 +

1

625(ψ5 − 1)

0 = −25

6
x14x22 +

25

6
x12x24 +

5

2
x24x32 −

5

2
x22x34 −

5

6
x14x42 +

5

6
x12x44 −

ψ4

125(ψ5 − 1)2

0 = −25

6
x14x23 +

25

6
x13x24 +

5

2
x24x33 −

5

2
x23x34 −

5

6
x14x43 +

5

6
x13x44 +

ψ3

125(ψ5 − 1)2
.

These equalities correspond to the entries (1, 2), (1, 3), (1, 4), (2, 3), (2, 4) and (3, 4) of (17).
In the ideal of Q(ψ)[xij , i, j = 1, 2, 3, 4] generated by the polynomials f12, f13, f14, f23, f2,4, f34

in the right hand side of the above equalities the polynomial det([xij ]) is reduced to the
right hand side of (18). For instance, Singular check this immediately (see [14]). Let yij
be indeterminate variables, R = C(ψ)[yij , i, j = 1, 2, 3, 4] and

I := {f ∈ R | f(xij) = 0}.

Proposition 3. The ideal I is generated by f12, f13, f14, f23, f2,4, f34.

Proof. Let E be the differential field over F = C(ψ) generated by xij ’s. Note that the
matrix [xij ] is the fundamental system of the linear differential equation:

∂

∂ψ
[xij ] = [xij ]B(ψ)t,

where B(ψ) is obtained from the matrix (10) by putting dt0 = 1, dt4 = 0, t0 = ψ, t4 = 1.
The homology group H3(Wψ,Q) has a symplectic basis and hence the monodromy group
of Wψ is a subgroup of Sp(4,Z). Consequently, the differential Galois group G(E/F ) is
an algebraic subgroup of Sp(4,C) and it contains a maximal unipotent matrix which is
the monodromy around z = 0. By a result of Saxl and Seitz, see [29], we have G(E/F ) =
Sp(4,C). Therefore, dimG(E/F ) = 10 which is the transcendental degree of the field E
over F (see [30]).

9 A leaf of Ra

The solutions of the the vector field Ra in the moduli space T are the locus of parameters
such that all the periods of ω are constant. We want to choose a solution of Ra and write
it in an explicit form. We proceed as follows:

Let δ̃i, δi i = 1, 2, 3, 4 be two basis of H3(Wt,Q) as in §8 and let C4×1 = [c1, c2, c3, c4]t

be given by the equality
[〈δ̃i, δ̃j〉]C = [1, 0, 0, 0]t.

and so C = [0, 0, 0,−6
5 ]t. We are interested on the loci L of parameters s ∈ T such that

(19)

∫
δi

ω = ci, i = 1, 2, 3, 4.
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We will write each coordinate of s in terms of periods: first we note that, on this locus we
have ∫

δ1

ω1 = 1

because

1 = 〈ω1, ω〉 =
∑
i,j

〈δ̃i, δ̃j〉
∫
δi

ω1

∫
δj

ω

= [

∫
δ1

ω1, . . . ,

∫
δ4

ω1][〈δ̃i, δ̃j〉]C =

∫
δ1

ω1.

By our choice ω1 does not depend on t1, t2 and t3. Therefore, the locus of parameters s
in T such that

∫
δ1
ω1 = 1 is given by

(20) (s0, s4) = (t0, t4) •
∫
δ1

= (t0

∫
δ1

ω1, t4(

∫
δ1

ω1)5)

with arbitrary s1, s2, s3. This is because for k = (
∫
δ1
ω1)−1, we have

∫
δ1
kω1 = 1 and under

the identification (t0, t4) 7→ (Wt0,t4 , ω1), the pair (t0, t4) • k−1 is mapped to (Wt0,t4 , kω1).
To find s1, s2, s3 parameters we proceed as follows: we know that ω = s1ω1 +s2ω2 +s3ω3 +
ω4

〈ω1,ω4〉 . This together with (19) and (12) imply that

[

∫
δi

ωj ]4×4[s1, s2, s3, 625(s4 − s5
0)]t = C

which gives formulas for s1, s2, s3 in terms of periods. Let us write all these in terms of
the periods of the one parameter family Wψ. Recall the notation xij in the Introduction.
We have s0 = ψx11, s1 = x5

11 and ∫
δi

ωj = x−j11 xij .

Note that in the above equality the cycle δi lives in Wψx11,x511
. We restrict si’s to t0 =

ψ, t4 = 1, we use the equality (18) and we get:

sk = −6

5

(−1)4+k det[x−j11 xij ]i,j=1,2,3,4, i 6=4, j 6=k

det[x−j11 xij ]

= −6

5

510

12
(1− ψ5)2(−1)4+kxk11 det[xij ]i,j=1,2,3,4, i 6=4, j 6=k k = 1, 2, 3,

Modulo the ideal I in §8 the expressions for sk’s can be reduced to to the shorter expressions
in the right hand side of the equalities in Theorem 3. In the left hand side we have written
ti instead of si. We also get the relation

625x5
11(1− ψ5) = −6

5

510

12
(1− ψ5)2x4

11 det[xij ]i,j=1,2,3.

The function ψ → s(ψ) := (s0(ψ), s1(ψ), . . . , s4(ψ)) is tangent to the vector field Ra but
it is not its solution. In order to get a solution, one has to make a change of variable in ψ.
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10 The parametrization

Let ω̃i, i = 1, 2, 3, 4 be the basis of the de Rham cohomology of Wt, t ∈ T constructed in
Proposition 2. We consider the period map:

pm : T → Mat(4), t 7→ [

∫
δi

ω̃j ]4×4,

where Mat(4) is the set of 4 × 4 matrices. By our construction of ω̃i, its image is of
dimension 5 and so it is an embedding in some open neighborhood U of a point p ∈ L in
T . We restrict its inverse s = (s0, s1, s2, s3, s4) to pm(L), where L is defined in §9. Note
that a point in pm(L) is of the form:

P =


1 p12 p13 0
τ p22 p23 0
p31 p32 p33 0
p41 p42 p43 −6

5

 .

We consider s0, s1, s2, s3, s4 and all the quantities pij as functions of τ and set ȧ = ∂a
∂τ .

This is our derivation in (1). Note that τ as a function in ψ is given by:

τ =

∫
δ2

Ω∫
δ1

Ω
.

We have ṡ(τ) = x(τ) · Ra(s(τ)) for some holomorphic function x in U ∩ L, because Ra
is tangent to the locus L and s is a local parametrization of L. Let A be the Gauss-
Manin connection matrix of the family Wt, t ∈ T in the basis ω̃i, i = 1, 2, 3, 4. We have
d(pm) = pm ·At, from which it follows

0 ṗ12 ṗ13 0
1 ṗ22 ṗ23 0
ṗ31 ṗ32 ṗ33 0
ṗ41 ṗ42 ṗ43 0

 =


1 p12 p13 0
τ p22 p23 0
p31 p32 p33 0
p41 p42 p43 −6

5




0 0 0 0
x 0 x · b2(s) 0
0 x x · b3(s) 0
0 0 x · b4(s) 0

 .

Here we have used the particular form of A in Proposition 2. The equalities corresponding
to the entries (1, i), i ≥ 2 together with the fact that x 6= 0, b4(s) 6= 0 imply that
p12 = p13 = 0. The equality for the entry (2, 1) implies that x = 1

p22
. Using these, we have

(21)


0 0 0 0
1 ṗ22 ṗ23 0
ṗ31 ṗ32 ṗ33 0
ṗ41 ṗ42 ṗ43 0

 =


1 0 0 0
τ p22 p23 0
p31 p32 p33 0
p41 p42 p43 −6

5




0 0 0 0
1
p22

0 b2(s)
p22

0

0 1
p22

b3(s)
p22

0

0 0 b4(s)
p22

0

 .

11 Periods

Four linearly independent solutions of (8) are given by ψ0, ψ1, ψ2, ψ3, where

(22)
3∑
i=0

ψi(z̃)ε
i +O(ε4) =

∞∑
n=0

(1 + 5ε)(2 + 5ε) · · · (5n+ 5ε)

((1 + ε)(2 + ε) · · · (n+ ε))5
z̃n+ε, z̃ =

z

55
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see for instance [21]. In fact, there are four topological cycles δ1, δ2, δ3, δ4 ∈ H3(Wz,Q)
such that ∫

δi

η =
(2πi)4−i

54
(i− 1)!ψi−1.

Performing the monodromy of (22) around z = 0, we get the same expression multiplied
with e2πiε. Therefore, the monodromy ψ̃i of ψi is given according to the equalities:

ψ̃0 = ψ0, ψ̃1 = (2πi)ψ0 + ψ1, ψ̃2 =
(2πi)2

2!
ψ0 + (2πi)ψ1 + ψ2,

ψ̃3 =
(2πi)3

3!
ψ0 +

(2πi)2

2!
ψ1 + (2πi)ψ2 + ψ3.

This implies that the topological monodromy, which acts on H3(W1,z,Q), in the basis
δi, i = 1, 2, 3, 4 is given by

(23) M =


1 0 0 0
1 1 0 0
1 2 1 0
1 3 3 1

 .

Further, the intersection form in this basis is Ψ in (16), and the monodromy around the
other singularity is 

1 −25
6 0 −5

6
0 1 0 0
0 0 1 0
0 0 0 1

 .

see for instance [31], page 5. In fact in [31] the authors have considered the basis
C[δ1, δ2, δ3, δ4]t, where

C =


0 25

6 0 5
6

25
6 0 5

2 0
0 5 0 0
5 0 0 0

 .

Note that in the mentioned reference when the authors say that with respect to a basis
δ1, δ2, δ3, δ4 of a vector space, a linear map is given by the matrix T then the action of the
linear map on δi is the i-th coordinate of [δ1, δ2, δ3, δ4]T and not T [δ1, δ2, δ3, δ4]t. Define

Z =


1 0 0 0
τ 1 0 0
τ2 2τ 2 0
τ3 3τ2 6τ 6

 .

Note that

D = Z−1Ż =


0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0


and under the monodromy M , τ goes to τ + 1 and Z goes to MZ. Therefore

Q = Z−1P =


1 0 0 0
0 p22 p23 0

1
2(p31 − τ2) 1

2p32 − τp22
1
2p33 − τp23 0

1
3τ

3 − 1
2τp31 + 1

6p41
1
2τ

2p22 − 1
2τp32 + 1

6p42
1
2τ

2p23 − 1
2τp33 + 1

6p43) −1
5
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is invariant under the monodromy around 0. The differential equation of P is given in (21)
which we write it in the form Ṗ = 1

p22
P · A(Ra)t. From this we calculate the differential

equation of Q;

Q̇ = −Z−1ŻZ−1P + Z−1Ṗ = −DQ+
1

q22
QA(Ra)t =

1

q22


0 0 0 0
0 q23 q22b2 + q23b3 0
q32 −q2

22 + q33 q32b2 + q33b3 − q22q23 0
−q22q31 + q42 −q22q32 + q43 q42b2 + q43b3 − 1

5b4 − q22q33 0

 .

Let us use the new notation s5 = q22 and s6 = q23. The first five lines of our differential
equation (1) is just ṡ = 1

s5
Ra(s) and the next two lines correspond to the equalities of

(2, 2) and (2, 3) entries of the above matrices. Note that in (1) we have used the notation
ti instead of si.

12 Calculating q-expansions

All the quantities si are invariant under the monodromy M around z = 0. This implies
that they are invariant under the transformation τ → τ + 1. Therefore, all si’s can be
written in terms of the new variable q = e2πiτ . In order to calculate all these q-expansions,
it is enough to restrict to the case t0 = 1, t1 = t2 = t3 = 0, t4 = z. We want to write

s0 =

∫
δ1

η, s4 = z(

∫
δ1

η)5

in terms of q. Calculating ψ0 and ψ1 from the formula (22) we get:

ψ0 =
∞∑
m=0

(5m)!

(m!)5
z̃m

ψ1 = ln(z̃)ψ0(z̃) + 5ψ̃1(z̃), ψ̃1 :=

∞∑
m=1

(5m)!

(m!)5
(

5m∑
k=m+1

1

k
)z̃m

and so

q = e
2πi

∫
δ2
η∫

δ1
η = z̃e

5
ψ̃1(z̃)
ψ0(z̃) .

By comparing few coefficients of z̃i and we get

(24) s0 =

∫
δ1

η =
1

5
(
2πi

5
)3ψ0 =

1

5
(
2πi

5
)3(1 + 5!q + 21000q2 + · · · )

(25) s4 = z(

∫
δ1

η)5 = 55(
1

5
(
2πi

5
)3)5z̃ψ5

0 = (
2πi

5
)15(0 + q − 170q2 + · · · ).

In the differential equation (1), we consider the weights

(26) deg(ti) = 3(i+ 1), i = 0, 1, . . . , 4, deg(t5) = 11, deg(t6) = 23.
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In this way in its right hand side we have homogeneous rational functions of degree
4, 7, 10, 13, 16, 12, 24 which is compatible with the left hand side if we assume that the
derivation increases the degree by one. We have ∂

∂τ = (2πi
5 )5q ∂∂q and so (2πi

5 )− deg(ti)si, i =
0, 1 . . . , 6 is the solution presented in the Introduction. The initial values (2) in the In-
troduction are taken from the equalities (24) and (25). In the literature, see for instance
[21, 28], we find also the equalities:

q31 =
1

2
(p31 − τ2) =

1

2
(

∫
δ3
η∫

δ1
η
− (

∫
δ2
η∫

δ1
η

)2) =
1

(2πi)2
(
ψ2

ψ0
− 1

2
(
ψ1

ψ0
)2) =

1

(2πi)2

1

5
(
∞∑
n=1

(
∑
d|n

ndd
3)
qn

n2
),

q14 =
1

3
τ3− 1

2
τp31 +

1

6
p41 =

1

(2πi)3
(
1

3
(
ψ1

ψ0
)3− ψ1

ψ0

ψ2

ψ0
+
ψ3

ψ0
) =

2

5

1

(2πi)3
((
∞∑
n=1

(
∑
d|n

ndd
3)
qn

n3
)),

where nd are as explained in the Introduction.

13 Proof of Theorem 3

The proof of the equalities for t0, t1, t3, t4 is done in §9. In §7 we have calculated ω̃2, ω̃3

in terms of ω2 and ω3. In §10 and §11 we have defined

s5 = p22 = q22 =

∫
δ2

ω̃2, s6 = p23 = q23 =

∫
δ2

ω̃3.

Using
∫
δi
ωj = x−j11 xij we get the expressions for s5, s6 in Theorem 3. Note that for

simplicity in Theorem 3 we have again used the notation ti instead of sia
− deg(ti), where

a = 2πi
5 and deg(ti) is defined in (26).

14 Proof of Theorem 1

The Yukawa coupling kτττ is a quantity attached to the family of Calabi-Yau varieties
W1,z. It can be written in terms of periods:

kτττ =
−5−4a6

(z ∂τ∂z )3(z − 1)(
∫
δ1
η)2

,

where τ =

∫
δ2
η∫

δ1
η

and a = 2πi
5 , see for instance [24] page 258. In [6] the authors have

calculated the q-expansion of the Yukawa coupling and they have reached to spectacular
predictions presented in Introduction. Let us calculate the Yukawa coupling in terms of
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our auxiliary quantities si. We use the notation ti = sia
− deg(ti).

kτττ =
−5−4a6

( t4
t50

)3

∂

(
t4
t50

)
∂τ

−3

( t4
t50
− 1)(a3t0)2

=

−5−4

 ˙︷︸︸︷
t4
t50

3

( t4
t50

)3( t4
t50
− 1)t20

=
−5−4(t0ṫ4 − 5ṫ0t4)3t12

0

t34(t4 − t0)

=
−5−4(t0(5t40t4 + 1

625 t3t4)− 5(6
5 t

5
0 + 1

3125 t0t3 −
1
5 t4)t4)3t12

0

t35t
3
4(t4 − t0)

=
−5−4(t4 − t50)2

t35

Theorem 1 is proved.

15 Proof of Theorem 2

First, we note that if there is a polynomial relation with coefficients in C between ti, i =
0, 1, . . . , 6 (as power series in q = e2πiτ and hence as functions in τ) then the same is true
if we change the variable τ by some function in another variable. In particular, we put
τ = x21

x11
and obtain ti’s in terms of periods. Now, it is enough to prove that the period

expressions in Theorem 3 are algebraically independent over C. Using Proposition 3, it is
enough to prove that the variety induced by the ideal Ĩ = 〈ti − ki, i = 0, 1, . . . , 6〉 + I ⊂
k[yij , i, j = 1, 2, 3, 4] is of dimension 16− 6− 7 = 3. Here ki’s are arbitrary parameters, I
is the ideal in §8, k = C(ki, i = 0, 1, . . . , 6) and in the expressions of ti we have written yij
instead of xij . This can be done by any software in commutative algebra (see for instance
[14]).

16 Moduli space, III

In this section we introduce moduli interpretation for t5 and t6. Let R̃a be the vector field
in C7 corresponding to (1) and let ω̃i, i = 1, 2, 3, 4 be the differential forms calculated in
Proposition 2. Consider ti, i = 0, 1, 2, . . . , 6 as unknown parameters. We define a new
basis ω̂i, i = 1, 2, 3, 4 of H3

dR(Wt0,t4):

ω̂1 = ω̃1, ω̂2 =
1

t5
ω̃2, ω̂3 =

57

(t4 − t50)2
(−t6ω̃2 + t5ω̃3), ω̂4 = ω̃4.

The intersection form in the basis ω̂i, i = 1, 2, 3, 4 is a constant matrix and in fact it is:

(27) Φ :=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0
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The Gauss-Manin connection composed with R̃a has also the form:

∇R̃a =


0 1 0 0

0 0
(t4−t50)2

57t35
0

0 0 0 −1
0 0 0 0


It is interesting that the Yukawa coupling appears as the only non constant term in the
above matrix. Let X be the moduli of pairs (W, [α1, α2, α3, α4]), where W is a Calabi-Yau
variety as before, αi ∈ F 4−i\F 5−i, F i ⊂ H3

dR(W ) is the i-th piece of the Hodge filtration,
αi’s form a basis of H3

dR(W ) and the intersection form in αi’s is given by the matrix (27).
We have the isomorphism

(28) {t ∈ C7 | t5t4(t4 − t50) 6= 0} ∼= X

t 7→ (Wt0,t4 , [ω̂1, ω̂2, ω̂3, ω̂4])

which gives the full moduli interpretation of all ti’s.

17 A conjecture and concluding remarks

A conjecture: We have calculated the first eleven coefficients of

(29)
1

24
t0,
−1

750
t1,
−1

50
t2,
−1

5
t3,−t4, 25t5, 15625t6

in the differential equation (1).

q0 q1 q2 q3 q4 q5 q6

1
24
t0

1
120

1 175 117625 111784375 126958105626 160715581780591
−1
750

t1
1
30

3 930 566375 526770000 592132503858 745012928951258
−1
50
t2

7
10

107 50390 29007975 26014527500 28743493632402 35790559257796542
−1
5
t3

6
5

71 188330 100324275 86097977000 93009679497426 114266677893238146

−t4 0 -1 170 41475 32183000 32678171250 38612049889554

25t5 − 1
125

15 938 587805 525369650 577718296190 716515428667010

15625t6 0 -15 26249 3512835 2527019900 2381349669050 2699403828169815

q7 q8 q9 q10

218874699262438350 314179164066791400375 469234842365062637809375 722875994952367766020759550
1010500474677945510 1446287695614437271000 2155340222852696651995625 3314709711759484241245738380
48205845153859479030 68647453506412345755300 101912303698877609329100625 156263153250677320910779548340
152527823430305901510 215812408812642816943200 318839967257572460805706125 487033977592346076373921829980

50189141795178390 69660564113425804800 101431587084669781525125 153189681044166218779637500
962043316960737646 1366589803139580122090 2024744003173189934886225 3099476777084481347731347688
3414337117855753978 4647615139046603293280 6668975996587015549602975 9957519516309695103093241870

We have also calculated the Yukawa coupling
−(t4−t50)2

625t35
. The numbers nd in the Intro-

duction are given by:
5, 2875, 609250, 317206375, 242467530000, 229305888887625, 248249742118022000,
295091050570845659250, 375632160937476603550000, 503840510416985243645106250,
704288164978454686113488249750
Based on these calculations we may conjecture:

Conjecture 1. All q-expansions of

1

24
t0 −

1

120
,
−1

750
t1 −

1

30
,
−1

50
t2 −

7

10
,
−1

5
t3 −

6

5
, −t4, 25t5 +

1

125
, 15625t6

have positive integer coefficients.
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We have verified the conjecture for the coefficients of qi, i ≤ 50 (see the author’s web
page)3. The rational numbers which appear in (29) are chosen in such a way that the
coefficients ti,n, n = 1, 2, . . . , 10 become positive integers and for each fixed i they are

relatively prime. Writing the series ti as Lambert series a0 +
∑∞

d=1 ad
qd

1−qd does not help
for understanding the structure of ti,n. It is not possible to factor out some potential of d
from ad’s for each ti. One should probably take out a polynomial in q from ti and then try
to understand the nature of the sequences. The on-line encyclopedia of integer sequences
does not recognize the integer sequences of t0, t1, . . . , t6. This supports the fact that the
general formula for ti’s or any interpretation of them is not yet known.

Is there a Calabi-Yau monster?: The parameter j∗ = z−1 =
t50
t4

classifies the Calabi-
Yau varieties of type (3), that is, each such Calabi-Yau variety is represented exactly
by one value of j∗ and two such Calabi-Yau varieties are isomorphic if and only if the
corresponding j∗ values are equal. This is similar to the case of elliptic curves which are
classified by the classical j-function (see §2). We have calculated also the q-expansions of
j∗:

3125 · j∗ =
1

q
+ 770 + 421375q + 274007500q2 + 236982309375q3 + 251719793608904q4

+304471121626588125q5 + 401431674714748714500q6 + 562487442070502650877500q7

+824572505123979141773850000q8 + 1013472859153384775272872409691q9 +O(q10)

The coefficient 3125 is chosen in such a way that all the coefficients of qi, i ≤ 9 in 3125 · j∗
are integer and all together are relatively prime. Note that the moduli parameter j∗ in
our case has two cusps ∞ and 1, that is, for these values of j∗ we have singular fibers.
Our q-expansion is written around the cusp ∞.

All the beautiful history behind the interpretation of the coefficients of the classical j-
function of elliptic curves, monster group, monstrous moonshine conjecture and Borcherds
proof, may indicate us another fascinating mathematics behind the q-expansion of the j∗-
function of the varieties (3).

Symplectic basis: The basis δ̂i, i = 1, 2, 3, 4 given by [δ̂1, δ̂2, δ̂3, δ̂4]t = C[δ1, δ2, δ3, δ4]t,
where

C :=


0 −1 0 0
−1 0 0 0
0 −5

2 −5
2 0

0 25
6 0 5

6

 ,

is the symplectic basis of H3(Wψ,Q), that is, the intersection matrix in this basis is given
by:

[〈δ̂i, δ̂j〉]4×4 =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .

3http://w3.impa.br/∼hossein/manyfiles/calculation-haftarticle.txt
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In this basis the monodromy group Γ of the family Wψ is generated by

T̂ :=


1 1 0 0
0 1 0 0
5 5 1 0
0 −5 −1 1

 , Ŝ :=


1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

In a private communication, Prof. Duco van Straten informed me of the following conjec-
ture: the group Γ has infinite index in Sp(4,Z).

Modular properties of ti’s: Recall the notation in §16. There is an algebraic group
which acts on the right hand side of the isomorphism (28). It corresponds to the base
change in ω̂i, i = 1, 2, 3, 4 such that the new basis is still compatible with the Hodge
filtration and we have still the intersection matrix (27):

G := {g = [gij ]4×4 ∈ GL(4,C) | gij = 0, for j < i and gtΦg = Φ},

(W, [α1, α2, α3, α4]) • g = (W, [α1, α2, α3, α4]g).

Therefore, we have the action of G on the t-space, where t = (t0, t1, . . . , t6), from the right
which we denote it again by •. The period map t 7→ [

∫
δ̂i
ω̂j ] written in the symplectic basis

gives us the modular properties of ti with respect to the monodromy group Γ = 〈T̂ , Ŝ〉 as
follows. We regard ti’s as the coordinates of the inverse of the period map restricted to
the matrices:

(30) P (τ) :=


τ 1 0 0
1 0 0 0
x31 x32 1 0
x41 −τx32 + x31 −τ 1

 ,

where

x31 =
1

2
(5(τ + τ2) +

1

(2πi)2
(

∞∑
n=1

(
∑
d|n

ndd
3)
e2πiτn

n2
))

x32 = x′31, x
′
41 = x31 − τx′31.

(recall that in this paragraph we are using the symplectic basis δ̂i). For an element A in
the monodromy group Γ and τ fixed, there is a unique element g(τ,A) of G and a matrix
P (τ̃) of the form (30) such that

A · P (τ) = P (τ̃) · g(τ,A)

and so
t(τ) = t(A · P (τ)) = t(P (τ̃)) • g(τ,A).

This is the modular functional equation of t. The explicit calculation of these modular
properties and the full definition of a modular or a quasi-modular form will be done
in the forthcoming articles. In the case of elliptic curves, the same procedure as above
gives us the modularity of the Eisenstein series g2 and g3 and the functional equation of g1

with an anomalous shift under SL(2,Z) (see [25]). In our context, two different phenomena
appear: first we do not have a functional equation for individual ti, but we have functional
equations involving all ti’s. Second, we have functional equations involving x31 and its
derivatives.
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