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In this article we describe Hecke operators on the differential 
algebra of geometric quasi-modular forms. As an application 
for each natural number d we construct a vector field in 
six dimensions which determines uniquely the polynomial 
relations between the Eisenstein series of weight 2, 4 and 6
and their transformation under multiplication of the argument 
by d, and in particular, it determines uniquely the modular 
curve of degree d isogenies between elliptic curves.
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1. Introduction

The theory of quasi-modular forms was first introduced by Kaneko and Zagier in [5]
due to its applications in mathematical physics. One can describe quasi-modular forms in 
the framework of the algebraic geometry of elliptic curves, and in particular, the Ramanu-
jan differential equation between Eisenstein series can be derived from the Gauss–Manin 
connection of families of elliptic curves, see for instance [7] and [9]. We call this the 
Gauss–Manin connection in disguise. The terminology arose from a private letter of 
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Pierre Deligne to the author, see [4]. In the present article we describe Hecke oper-
ators for such quasi-modular forms, and certain differential ideals related to modular 
curves. In [3] the authors describe a differential equation in the j-invariant of two ellip-
tic curves which is tangent to all modular curves of degree d isogenies of elliptic curves. 
This differential equation can be derived from the Schwarzian differential equation of the 
j-function and the latter can be calculated from the Ramanujan differential equation be-
tween Eisenstein series. This suggests that there must be a relation between Ramanujan 
differential equation and modular curves. In this article we also establish this relation. 
Another motivation behind this work is to prepare the ground for similar topics in the 
case of Calabi–Yau varieties, see [8].

Consider the Ramanujan ordinary differential equation

R :

⎧⎪⎨
⎪⎩

ṡ1 = 1
12 (s2

1 − s2)
ṡ2 = 1

3 (s1s2 − s3)
ṡ3 = 1

2 (s1s3 − s2
2)

ṡk = ∂sk
∂τ

(1)

which is satisfied by the Eisenstein series:

si(τ) = aiE2i(q) := ai

⎛
⎝1 + bi

∞∑
n=1

⎛
⎝∑

d|n
d2i−1

⎞
⎠ qn

⎞
⎠ ,

i = 1, 2, 3, q = e2πiτ , Im(τ) > 0 (2)

and

(b1, b2, b3) = (−24, 240,−504), (a1, a2, a3) = (2πi, (2πi)2, (2πi)3).

The algebra of modular forms for SL(2, Z) is generated by the Eisenstein series E4 and 
E6 and all modular forms for congruence groups are algebraic over the field C(E4, E6), 
see for instance [14]. In a similar way the algebra of quasi-modular forms for SL(2, Z) is 
generated by E2, E4 and E6, see for instance [6,9], and we have:

Theorem 1. For i = 1, 2, 3 and d ∈ N, there is a homogeneous polynomial Id,i of degree 
i ·ψ(d), where ψ(d) := d 

∏
p(1 + 1

p ) is the Dedekind ψ function and p runs through primes 
p dividing d, in the weighted ring

Q[ti, s1, s2, s3], weight(ti) = i, weight(sj) = j, j = 1, 2, 3 (3)

and monic in the variable ti such that ti(τ) := d2i · si(d · τ), s1(τ), s2(τ), s3(τ) satisfy the 
algebraic relation:

Id,i(ti, s1, s2, s3) = 0.

Moreover, for i = 2, 3 the polynomial Id,i does not depend on s1.
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The novelty of Theorem 1 is mainly due to the case i = 1. We consider si, ti, i = 1, 2, 3
as indeterminate variables and for simplicity we do not introduce new notation in order 
to distinguish them from the Eisenstein series. We regard (t, s) = (t1, t2, t3, s1, s2, s3)
as coordinates of the affine variety A6

k, where k is any field of characteristic zero and 
not necessarily algebraically closed. Ramanujan’s ordinary differential equation (1) is 
considered as a vector field in A3

k with the coordinates (s1, s2, s3). It can be shown that 
the curve given by Id,2 = Id,3 = 0 in the weighted projective space P(2,3,2,3)

C
with the 

coordinates (t2, t3, s2, s3) is a singular model for the modular curve

X0(d) := Γ0(d)\(H ∪Q), where Γ0(d) := {
(
a1 a2
a3 a4

)
∈ SL(2,Z) | a3 ≡ 0 (mod d)}.

Computing explicit equations for X0(d) in terms of the variables j1 = 1728 t32
t32−t23

and 

j2 = 1728 s32
s32−s23

has many applications in number theory and it has been done by many 
authors, see for instance [13] and the references therein.

Let Rt, respectively Rs, be the Ramanujan vector field in A3
k with coordinates 

(t1, t2, t3), respectively (s1, s2, s3). In A6
k = A3

k × A3
k with the coordinates system (t, s)

we consider the vector field:

Rd := Rt + d · Rs.

Let T := A3
k\{t32 − t23 = 0} and let Vd be the affine subvariety of T ×T given by the ideal 

〈Id,1, Id,2, Id,3〉 ⊂ k[s, t, 1
t32−t23

, 1
s32−s23

].

Theorem 2. The vector field Rd is tangent to the affine variety Vd.

I do not know the complete classification of all Rd-invariant algebraic subvarieties 
of A6

k . We consider Rd as a differential operator:

k[t, s] → k[t, s], f 	→ Rd(f) := df(Rd).

From Theorem 2 and the fact that Vd is irreducible (see Section 9), it follows that:

Rj
d(Id,i) ∈ Radical〈Id,1, Id,2, Id,3〉, i = 1, 2, 3, j ∈ N ∪ {0}.

Note that the ideal 〈Id,1, Id,2, Id,3〉 ⊂ k[s, t, 1
t32−t23

, 1
s32−s23

] may not be radical. We can 
compute Id,i’s using the q-expansion of Eisenstein series, see Section 11. This method 
works only for small degrees d. However, for an arbitrary d we can introduce some 
elements in the radical of the ideal generated by Id,i, i = 1, 2, 3. Let

Jd,i = det

⎛
⎜⎜⎜⎝

α1 α2 · · · αmd,i

Rd(α1) Rd(α2) · · · Rd(αmd,i
)

...
... · · ·

...
md,i−1 md,i−1 md,i−1

⎞
⎟⎟⎟⎠ ,
Rd (α1) Rd (α2) · · · Rd (αmd,i
)
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where for i = 1, αj ’s are the monomials:

ta0
i sa1

1 sa2
2 sa3

3 , i · ψ(d) = ia0 + a1 + 2a2 + 3a3, a0, a1, a2, a3 ∈ N0 (4)

and for i = 2, 3, αj ’s are the above monomials with a1 = 0. Here, md,i is the number of 
monomials αj ’s. The polynomial Jd,i is weighted homogeneous of degree

i · ψ(d) + i · ψ(d) + 1 + i · ψ(d) + 2 + · · · + i · ψ(d) + md,i − 1

= md,i · i · ψ(d) + md,i · (md,i − 1)
2 .

Theorem 3. We have

Jd,i ∈ Radical〈Id,1, Id,2, Id,3〉, i = 1, 2, 3,

and so

Jd,i(d2i · si(d · τ), s1(τ), s2(τ), s3(τ)) = 0, i = 1, 2, 3.

Our proofs of Theorems 1, 2, 3 use the notion of geometric quasi-modular forms, 
Hecke operators and the fact that the affine variety A3

k\{t32 − t23 = 0} is a fine moduli of 
elliptic curves enhanced with elements in their de Rham cohomologies, see Theorem 4. 
It might be possible to modify our proofs in order to avoid any reference to Algebraic 
Geometry, however, one may lose the motivation for many arguments which mainly lie 
on the geometry of vector fields. Moreover, geometric approach to quasi-modular forms 
gives us a convenient context in order to work over rational numbers and this might lead 
us to connections of arithmetic of elliptic curves and quasi-modular forms.

Throughout the text we will state our results over a field k of characteristic zero and 
not necessarily algebraically closed. Such results are valid if and only if the same results 
are valid over the algebraic closure k̄ of k. By Lefschetz principle, see for instance [11]
p. 164, it is enough to prove such results over the complex numbers. For a variety T
defined over k, T(k) denotes the set of k-rational points of T.

The article is organized in the following way. In Section 2 and Section 3 we recall the 
definition of full quasi-modular forms in the framework of both algebraic geometry and 
complex analysis. In Section 4 we describe some facts relating isogenies and algebraic 
de Rham cohomology of elliptic curves. Using isogeny of elliptic curves we introduce 
geometric Hecke operators in Section 5 and in Section 6 we describe their translation into 
holomorphic Hecke operators. For our discussion of modular curves we need a refined 
version of Hecke operators that we discuss in Section 7. Theorem 1, Theorem 2 and 
Theorem 3 are respectively proved in Section 8, Section 9 and Section 10. Finally, in 
Section 11 we give some examples.

The main idea behind the proof of Theorem 3 is due to J.V. Pereira in [10]. Here, 
I would like to thank him for teaching me such an elegant and simple argument. Thanks 
go to J. Sijsling for his useful comments for the first draft of the present text. Finally, 
I would like to thank the referee whose critical comments improved the text.



428 H. Movasati / Journal of Number Theory 157 (2015) 424–441
2. Geometric quasi-modular forms

In this section we recall some definitions and theorems in [6,7]. The reader is also 
referred to [9] for a complete account of quasi-modular forms in a geometric context. 
Note that in [9] the t parameter is in fact ( 1

12 t1, 12 1
122 t2, 8 1

123 t3). Let k be any field of 
characteristic zero and let E be an elliptic curve over k. The first algebraic de Rham 
cohomology of E, namely H1

dR(E), is a k-vector space of dimension two and it has a one 
dimensional space F 1 consisting of elements represented by regular differential 1-forms 
on E. Let us define

T := Spec(k[t1, t2, t3,
1

t32 − t23
])

Theorem 4. (See [9], §5.5.) The affine variety T is the fine moduli of the pairs (E, ω), 
where E is an elliptic curve and ω ∈ H1

dR(E)\F 1. For (t1, t2, t3) ∈ T(k), the correspond-
ing pair (E, ω) is given by

E : 3y2 = (x− t1)3 − 3t2(x− t1) − 2t3, ω = 1
12

xdx

y
. (5)

From now on an element of T(k) is denoted either by (t1, t2, t3) or (E, ω). We can 
regard ti as a rule which for any pair (E, ω) as above it associates an element ti =
ti(E, ω) ∈ k. We will also use ti as an indeterminate variable or an element in k, being 
clear from the text which we mean. For m an even number, a full quasi-modular form 
f of weight m and differential order n is a homogeneous polynomial of degree m2 in the 
k-algebra

M := k[t1, t2, t3], weight(ti) = i, i = 1, 2, 3,

with degt1 f ≤ n. The set of such quasi-modular forms is denoted by Mn
m.

For a pair (E, ω) ∈ T(k) we have also a unique element α ∈ F 1 satisfying 〈α, ω〉 = 1, 
where 〈·, ·〉 is the intersection form in the de Rham cohomology, see for instance [9]
§2.10. For this reason we sometimes use (E, {α, ω}) instead of (E, ω). The algebraic 
groups Ga := (k, +) and Gm := (k − {0}, ·) act from the right on T(k):

(E,ω) • k := (E, kω), k ∈ Gm,

(E,ω) ◦ k := (E,ω + kα), k ∈ Ga

and so they act from the left on M . It can be shown that Mn
m is invariant under these 

actions and the functions ti : T → k, i = 1, 2, 3 satisfy

k ◦ t1 = t1 + k, k ◦ ti = ti, i = 2, 3 k ∈ Ga, (6)

k • ti = k−2iti, i = 1, 2, 3 k ∈ Gm. (7)
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Let R be the Ramanujan vector field in T. It is the unique vector field in T which satisfies 
∇Rα = −ω, ∇Rω = 0, where ∇ is the Gauss–Manin connection of the universal family of 
elliptic curves over T, see for instance [9] §2. The k-algebra of full quasi-modular forms 
has a differential structure which is given by:

Mn
m → Mn+1

m+2, t 	→ R(t) :=
3∑

i=1

∂t

∂ti
Ri,

where R =
∑3

i=1 Ri
∂
∂ti

is the Ramanujan vector field.

3. Holomorphic quasi-modular forms

Now, let us assume that k = C. The period domain is defined to be

P :=
{(

x1 x2
x3 x4

)
| xi ∈ C, x1x4 − x2x3 = 1, Im(x1x3) > 0

}
. (8)

We let the group SL(2, Z) act from the left on P by usual multiplication of matrices. In 
P we consider the vector field

X = −x2
∂

∂x1
− x4

∂

∂x3
(9)

which is invariant under the action of SL(2, Z) and so it induces a vector field in the 
complex manifold SL(2, Z)\P. For simplicity we denote it again by X. The Poincaré 
upper half plane H is embedded in P in the following way:

τ →
(
τ −1
1 0

)

and so we have a canonical map H → SL(2, Z)\P.

Theorem 5. (See [9] §8.4 and §8.8.) The period map

pm : T(C) → SL(2,Z)\P

t 	→
[

1√
−2πi

( ∫
δ
α

∫
δ
ω∫

γ
α

∫
γ
ω

)]

is a biholomorphism, where {δ, γ} is a basis of H1(E, Z) with 〈δ, γ〉 = −1. Under this 
biholomorphism the Ramanujan vector field is mapped to X. The pull-back of ti by the 
composition

H → SL(2,Z)\P pm−1

→ T(C) ↪→ A3
C, (10)

is the Eisenstein series aiE2i(e2πiτ ) in (2).
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The algebra of full holomorphic quasi-modular forms is the pull-back of k[t1, t2, t3]
under the composition (10). We can also introduce it in a classical way using functional 
equations plus growth conditions: a holomorphic function f on H is called a (holo-
morphic) quasi-modular form of weight m and differential order n if the following two 
conditions are satisfied:

1. There are holomorphic functions fi(z), i = 0, 1, . . . , n on H such that

(cz + d)−mf(Az) =
n∑

i=0

(
n

i

)
ci(cz + d)−ifi(z), ∀A =

(
a b

c d

)
∈ SL(2,Z). (11)

2. fi(z), i = 0, 1, 2, . . . , n have finite growths when Im(z) tends to +∞, i.e.

lim
Im(z)→+∞

fi(z) = ai,∞ < ∞, ai,∞ ∈ C.

For the proof of the equivalence of both notions of quasi-modular forms see [9] §8.11. We 
have f0 = f and the associated functions fi are unique. In fact, fi is a quasi-modular form 
of weight m − 2i and differential order n − i and with associated functions fij := fi+j . 
It is useful to define

f ||mA := (detA)m−1
n∑

i=0

(
n

i

)
( −c

det(A) )i(cz + d)i−mfi(Az),

A =
(
a b

c d

)
∈ GL(2,R), f ∈ Mn

m. (12)

In this way, the equality (11) is written in the form

f = f ||mA,∀A ∈ SL(2,Z) (13)

and we have

f ||mA = f ||m(BA), ∀A ∈ GL(2,R), B ∈ SL(2,Z), f ∈ Mn
m, (14)

fk||kmA = (detA)k−1(f ||mA)k, ∀A ∈ GL(2,R), k ∈ N. (15)

It can be proved that the algebra of full quasi-modular forms is generated by the 
Eisenstein series E2i, i = 1, 2, 3. For further details on holomorphic quasi-modular forms 
see [6,7,9].

4. Isogeny of elliptic curves

Let (E1, 01) and (E2, 02) be two elliptic curves over the field k. Here, 0i ∈ Ei(k), 
i = 1, 2 is the neutral element of the group Ei(k). We say that E1 is isogenous to E2
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over k if there is a non-constant morphism of algebraic curves over k f : E1 → E2 which 
sends 01 to 02. It can be shown that f induces a morphism of groups E1(k) → E2(k). 
We also say that f is an isogeny between E1 and E2 over k. For all points p ∈ E(k̄)
except a finite number, #f−1(p) is a fixed number which we denote it by deg(f). Here, 
we have considered f as a map from E1(k̄) to E2(k̄). Since f is a morphism of groups, 
for a point q ∈ f−1(p) the map x 	→ x + q induces a bijection f−1(02) ∼= f−1(p). We 
conclude that for all points p ∈ E2(k̄), the set f−1(p) has deg(f) points (and hence f
has no ramification points).

Proposition 1. Let f : E1 → E2 be an isogeny of degree d. Then for all ω, α ∈ H1
dR(E2)

we have

〈f∗ω, f∗α〉 = d · 〈ω, α〉.

Here, 〈·, ·〉 : H1
dR(E) ×H1

dR(E) → k is the intersection form in the de Rham cohomol-
ogy, see [9] §2.10.

Proof. It is enough to prove the proposition over an algebraically closed field. Since the 
above formula is k-linear in both ω and α, it is enough to prove it in the case ω = dx

y , 
α = xdx

y , where x, y are the Weierstrass coordinates of E2. Since 〈dxy , xdxy 〉 = 1, we have 

to prove that 〈f∗(dxy ), f∗(xdxy )〉 = d. Let f−1(02) = {p1, p2, . . . , pd}. The differential form 

f∗(dxy ) is again a regular differential form and f∗(xdxy ) has poles of order two at each pi. 
Consider the covering U = {U0, U1} of E1, where U0 = E1\f−1(02) and U1 is any other 
open set which contains f−1(02). The differential forms f∗(x

idx
y ), i = 0, 1 as elements in 

H1
dR(E1) are represented by the pairs

(dx̃
ỹ
,
dx̃

ỹ
), ( x̃dx̃

ỹ
,
x̃dx̃

ỹ
− 1

2d(
ỹ

x̃
)),

where x̃ = f∗x, ỹ = f∗y. We have dx̃ỹ ∪ x̃dx̃
ỹ = {ω01}, where ω01 = −1

2
dx̃
x̃ and so

〈f∗(dx
y

), f∗(xdx
y

)〉 = 〈dx̃
ỹ
,
x̃dx̃

ỹ
〉 =

d∑
i=1

Residue(−1
2

dx̃

x̃
, pi) =

d∑
i=1

1 = d. �

Proposition 2. We have:

1. Let f : E1 → E2 be an isogeny defined over k. The induced map f∗ : H1
dR(E2) →

H1
dR(E1) is an isomorphism.

2. Let [d]E : E → E be the multiplication by d ∈ N map. We have [d]∗E : H1
dR(E) →

H1
dR(E), ω 	→ d · ω.

Proof. In the complex context, E = C/〈τ, 1〉 and [d]E is induced by C → C, z 	→ d · z. 
Moreover, a basis of the C∞ de Rham cohomology is given by dz, dz̄. This proves the 
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second part of the proposition. For the first part we take the dual isogeny and use the 
first part. �

For E an elliptic curve over an algebraically closed field k of characteristic zero, the 
number of isogenies f : E1 → E of degree d and up to canonical isomorphisms is equal 
to σ1(d) :=

∑
c|d c. To prove this we may work in the complex context and assume that 

E = C/〈τ, 1〉. The number of such isogenies is the number of subgroups of order d of 
(Z/dZ)2, which is known to be σ1(d).

5. Geometric Hecke operators

In this section all the algebraic objects are defined over k unless it is mentioned 
explicitly. Let d be a positive integer. The Hecke operator Td acts on the space of full 
quasi-modular forms as follows:

Td : Mn
m → Mn

m,

Td(t)(E,ω) = 1
d

∑
f :E1→E, deg(f)=d

t(E1, f
∗ω), t ∈ Mn

m

where the sum runs through all isogenies f : E1 → E of degree d defined over k̄. Since 
(E, ω) and t are defined over k, Td(t)(E, ω) is invariant under Gal(k̄/k) and so it is in 
the field k. This implies that Td(t) is defined over k. The statement Td ∈ k[t1, t2, t3] is 
not at all clear. In order to prove this, we assume that k = C and we prove the same 
statement for holomorphic quasi-modular forms, see Section 6. The functional equation 
of Tdt with respect to the action of the algebraic groups Gm and Ga can be proved in 
the algebraic context as follows:

Proposition 3. The action of Gm commutes with Hecke operators, that is,

k • Td(t) = Td(k • t), t ∈ M, k ∈ Gm (16)

and the action of Ga satisfies:

k ◦ Td(t) = Td((d · k) ◦ t), t ∈ M, k ∈ Ga.

Proof. The first equality is trivial:

(k • Td(t))(E,ω) = Td(t)(E, kω) = 1
d

∑
t(E1, f

∗(kω))

= 1 ∑
(k • t)(E1, f

∗(ω)) = Td(k • t)(E,ω)

d
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For the second equality we use Proposition 1:

(k ◦ Td(t))(E,ω) = Td(t)(E,ω + kα) = 1
d

∑
t(E1, f

∗(ω + kα))

= 1
d

∑
t(E1, f

∗(ω) + d · kf∗(1
d
α)) = 1

d

∑
((d · k) ◦ t)(E1, f

∗(ω))

= Td(d · k ◦ t)(E,ω). �
We can also define the Hecke operators in the following way:

Td(t)(E,ω) = dm−1
∑

g:E→E1, deg(g)=d

t(E1, g∗ω), t ∈ Mn
m

where the sum runs through all isogenies g : E → E1 of degree d defined over k̄. Both 
definitions of Td(t) are equivalent: for an isogeny f : E1 → E of degree d defined over k̄
we have a unique dual isogeny g : E → E1 such that

f ◦ g = [d]E , g ◦ f = [d]E1 .

Therefore by Proposition 2 we have d · g∗ω = [d]∗E1
(g∗ω) = f∗ω and so

t(E1, f
∗ω) = t(E1, d · g∗ω) = dmt(E1, g∗ω).

It can be shown that the geometric Eisenstein modular form Gk (see [9] §6.5) is an 
eigenform with eigenvalue

σk−1(d) :=
∑
c|d

ck−1

for the Hecke operator Td, that is

TdGk = σk−1(d)Gk, d ∈ N, k ∈ 2N

see for instance [6].
The differential operator R : M → M and the Hecke operator Td commute, that is

R ◦ Td = Td ◦ R, ∀d ∈ N.

For the proof we may assume that k = C. In this way using Theorem 5 it is enough 
to prove the same statement for holomorphic quasi-modular forms, see for instance [7]
Proposition 4.
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6. Holomorphic Hecke operators

In this section we want to use the biholomorphism in Theorem 5 and describe the 
Hecke operators on holomorphic quasi-modular forms. Let us take k = C and let 
Matd(2, Z) be the set of 2 × 2 matrices with coefficients in Z and with determinant d.

Proposition 4. The d-th Hecke operator on the vector space of quasi-modular forms of 
weight m and differential order n is given by

Td : Mn
m → Mn

m, Tdf =
∑
A

f ||mA,

where A runs through the set SL(2, Z)\Matd(2, Z) and || is the double slash operator (12)
for quasi-modular forms.

Proof. Let us consider two points (Ei, {αi, ωi}), i = 1, 2 in the moduli space T. Let us 
also consider a d-isogeny f : E1 → E2 with

f∗ω2 = ω1, f∗α2 = d · α1.

We can take a symplectic basis δ1, γ1 of H1(E1, Z) and δ2, γ2 of H1(E2, Z) such that

f∗[δ1, γ1]tr = A[δ2, γ2]tr,

where A ∈ Matd(2, Z) and tr means transpose of a matrix. From another side we have

[α1, ω1]B = f∗[α2, ω2], where B =
(
d 0
0 1

)

Therefore, if the period matrix associated to (Ei, {αi, ωi}, {δi γi}), i = 1, 2 is denoted 
respectively by x′ and x then

x′B = Ax.

Using Theorem 5, the d-th Hecke operator acts on the space of SL(2, Z)-invariant holo-
morphic functions on P by:

TdF (x) = 1
d

∑
A

F (AxB−1), x ∈ P

where A =
(
a1 b1
c1 d1

)
runs through SL(2, Z)\Matd(2, Z). Let f ∈ Mn

m be a holomorphic 

quasi-modular form defined on the upper half plane. By definition there is a geometric 
modular form f̃ ∈ C[t1, t2, t3] such that f is the pull-back of f̃ by the composition (10). 
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Let F be the holomorphic function on P obtained by the push-forward of f̃ by the period 
map and then its pull-back by P → SL(2, Z)\P. We have

Tdf(τ) = TdF

(
τ −1
1 0

)

= 1
d

∑
A

F (A
(
τ −1
1 0

)
B−1)

= 1
d

∑
A

F (
(
Aτ −1
1 0

)(
d−1(c1τ + d1) −c1

0 (c1τ + d1)−1d

)
)

= 1
d

∑
A

dm(c1τ + d1)−m
n∑

i=0

(
n

i

)
(−c1)i(c1τ + d1)id−ifi(A(τ))

=
∑
A

f ||mA. �

In the passage from the second to third equality we have used

A

(
τ −1
1 0

)
=

(
Aτ −1
1 0

)(
c1τ + d1 −c1

0 (detA)(c1τ + d1)−1

)
.

For the passage from the third to fourth equality we have used the functional equation 
of f̃ (and hence the SL(2, Z)-invariant function F ) with respect to the actions in (6)
and (7), see [7] Proposition 6. One can take the representatives

{Ai} :=
{( d

c b

0 c

)∣∣∣∣ c | d, 0 ≤ b < c

}

for the quotient SL(2, Z)\Matd(2, Z) and so

Tdf(τ) = 1
d

∑
cc′=d, 0≤b<c

c′
m
f
(c′τ + b

c

)
. (17)

In a similar way to the case of modular forms (see [1] §6) one can check that

Tp ◦ Tq =
∑

d|(p,q)
dm−1T pq

d2
.

If we write f =
∑∞

n=0 fnq
n then we have:

(Tdf)n =
∑

c|(d,n)

cm−1fnd
c2
.

In particular if we set n = 0 then the constant term of Td(f) is f0σm−1(d). If f is 
an eigenvector of Td and the constant term of f is non-zero then the corresponding 
eigenvalue is σm−1(d).
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7. Refined Hecke operators

Let Wd be the set of subgroups of Z

dZ × Z

dZ of order d and Sd be the set (up to 
isomorphism) of abelian finite groups of order d and generated by at most two elements. 
We have a canonical surjective map Wd → Sd.

Proposition 5. We have bijections

SL(2,Z)\Matd(2,Z) ∼= Wd, (18)

SL(2,Z)\Matd(2,Z)/SL(2,Z) ∼= Sd, (19)

both given by
(
a b

c d

)
	→ Z2

Z(a, b) + Z(c, d) .

If d is square-free then both sides of the second bijection are single points.

Proof. First note that the induced maps are both well-defined. The first bijection is 
already proved and used in Section 6. The action of SL(2, Z) from the left on Matd(2, Z)
corresponds to the base change in the lattice Z(a, b) + Z(c, d) in the right hand side of 
the bijection. The action of SL(2, Z) from the right on Matd(2, Z) corresponds to the 
isomorphism of finite groups in the right hand side of the bijection. �

Any element in Sd is isomorphic to the group Z

d2Z
× Z

d1d2Z
for some d1, d2 ∈ N with 

d = d2
2d1. In the right hand side of (19) the corresponding element is represented by the 

matrix 
(
d1d2 0

0 d2

)
. In the geometric context, this means that any isogeny of elliptic 

curves E1 → E2 over an algebraically closed field can be decomposed into E1
α→ E1

β→
E2, where α is the multiplication by d2 and β is a degree d1 isogeny with cyclic center. 
Note that

σ1(d) =
∑

d=d2
2d1

ψ(d1).

We conclude that we have a natural decomposition of both geometric and holomorphic 
Hecke operators:

Tdt =
∑

d=d2
2d1

d−m−2
2 · T 0

d1
t, t ∈ Mn

m (20)

where in the geometric context

T 0
d : Mn

m → Mn
m, T 0

d (t)(E,ω) = 1
d

∑
t(E1, f

∗ω),

f :E1→E, deg(f)=d,ker(f) is cyclic
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and in the holomorphic context

T 0
d : Mn

m → Mn
m, T 0

d f =
∑

A∈(SL(2,Z)\Matd(2,Z))0
f ||mA.

Here, (SL(2, Z)\Matd(2, Z))0 is the fiber of the map

SL(2,Z)\Matd(2,Z) → SL(2,Z)\Matd(2,Z)/SL(2,Z)

over the matrix 
(
d 0
0 1

)
. The factor d−m

2 in (20) comes from the functional equation of 

t with respect to the action of Gm and the second part of Proposition 2. Note that in 
the geometric context using the Galois action Gal(k̄/k), we can see that T 0

d is defined 
over the field k and not its algebraic closure. We call T 0

d the refined Hecke operator. The 
refined Hecke operator T 0

d will be used in the next sections. Note that if d is square free 
then T 0

d = Td.

8. Proof of Theorem 1

For a holomorphic quasi-modular form of weight m we associate the polynomial

P 0
f (x) :=

∏
A∈(SL(2,Z)\Matd(2,Z))0

(x− d · f ||mA) =
ψ(d)∑
j=0

P 0
f,jx

j .

Proposition 6. P 0
f,j is a full quasi-modular form of weight (ψ(d) − j) ·m.

Proof. The coefficient P 0
f,j of xj is a homogeneous polynomial with rational coefficients 

and of degree ψ(d) − j in

T 0
d (fk), k = 1, 2, . . . , ψ(d) − j, weight(T 0

d (fk)) = k,

where T 0
d : M → M is the refined d-th Hecke operator defined in Section 7. Here, we have 

used (15). For instance, the coefficient of xψ(d)−1 is −d ·T 0
d f and the coefficient of xψ(d)−2

is d
2

2 (T 0
d f)2 − d

2T
0
d f

2. Now the assertion follows from the fact that the Hecke operator 
T 0
d sends a quasi-modular form of weight m to a quasi-modular form of weight m. �
Using the fact that the algebra of quasi-modular forms over Q is isomorphic to 

Q[E2, E4, E6] we conclude that P 0
f (x) is a homogeneous polynomial of degree ψ(d) ·m

in the ring

Q[x,E2, E4, E6], weight(E2k) = k, k = 1, 2, 3, weight(x) = m.
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The geometric definition of the polynomial P 0
f (x) is:

P 0
f (x)(E,ω) =

∏
(x− f(E1, g

∗ω)), (21)

where the product is taken over all degree d isogenies g : E1 → E with cyclic kernel.

Proof of Theorem 1. Let us regard si’s as holomorphic functions on the upper half plane 
and ti’s as variables. We define

Id,i := P 0
si(ti), i = 1, 2, 3.

For i = 1, 2, 3, T 0
d s

k
i is a homogeneous polynomial of degree ki in Q[s1, s2, s3], 

weight(si) = i, and hence, from Proposition 6 it follows that Id,i(ti, s1, s2, s3) is a homo-
geneous polynomial of degree i · ψ(d) in the weighted ring (3). We have

si||2i
(
d 0
0 1

)
= d2i−1si(dτ)

and so Id,i(d2i · si(d · τ), s1(τ), s2(τ), s3(τ)) = 0. By definition Id,i is monic in ti for 
i = 1, 2, 3. Finally, note that for i = 2, 3, T 0

d s
k
i is a homogeneous polynomial of degree ki

in Q[s2, s3], weight(si) = i, and so, Id,i(ti, s1, s2, s3) does not depend on s1. �
9. Proof of Theorem 2

Since the period map pm is a biholomorphism, it is enough to prove the same statement 
for the push-forward of R and Vd under the product of two period maps:

pm × pm : T × T → SL(2,Z)\P × SL(2,Z)\P.

First we describe the push-forward of Vd. Using Theorem 4 and the comparison of Hecke 
operators in both algebraic and complex context, we have:

Vd = {((E1, ω1), (E2, ω2)) ∈ T × T | ∃f : E1 → E2, f∗ω2 = ω1,

ker(f) is cyclic of order d}.

Let us now consider the elliptic curves Ei, i = 1, 2 as complex curves. For a d-isogeny 
f : E1 → E2 such that ker(f) is cyclic, we can take a symplectic basis δ1, γ1 of H1(E1, Z)
and δ2, γ2 of H1(E2, Z) such that

f∗δ1 = d · δ2, f∗γ1 = γ2.

Therefore, if the period matrix associated to (Ei, {αi, ωi}, {δi γi}), i = 1, 2 is denoted 
respectively by x and y then
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x = πd(y) :=
(

y1 dy2
d−1y3 y4

)
.

Therefore, the push-forward of Vd under pm × pm and then its pull-back to P × P is 
given by:

V ∗
d = {(πd(y), y) | y ∈ P}.

The push-forward of the vector field Rd by pm × pm and then its pull-back in P × P is 
given by the vector field

R∗ = d(y2
∂

∂y1
+ y4

∂

∂y3
) − (x2

∂

∂x1
+ x4

∂

∂x3
)

where we have used the coordinates (x, y) for P × P. Now, it can be easily shown that 
the above vector field R∗ is tangent to V ∗

d .

Remark 1. The locus V ∗
d contains the one dimensional locus:

H̃ := {
((

τ −d

d−1 0

)
,

(
τ −1
1 0

))
| τ ∈ H}. (22)

Note also that the push-forward of the Ramanujan vector field R is tangent to the image 
of H → P and restricted to this locus it is ∂

∂τ . Therefore, R∗ is tangent to the locus H̃
and restricted to there is again ∂

∂τ .

10. Proof of Theorem 3

From Theorem 1 it follows that Id,1 is a linear combination of the monomials (4) and 
Id,i, i = 2, 3 is a linear combination of the same monomials with a1 = 0. The proof is 
a slight modification of an argument in holomorphic foliations, see [10]. We prove that 
Jd,i’s restricted to Vd are identically zero. We know that Id,i is a linear combination of 
αj ’s with C (in fact Q) coefficients:

Id,i =
∑

cjαj .

Since Rd is tangent to the variety Vd, we conclude that Rr
d(
∑

cjαj) =
∑

cjRr
dαj restricted 

to Vd is zero. This in turn implies that the matrix used in the definition of Jd,i restricted 
to Vd has non-zero kernel and so its determinant restricted to Vd is zero.

11. Examples and final remarks

In order to calculate Id,i’s using Theorem 3 we can proceed as follows: We use 
the Gröbner basis algorithm and find the irreducible components of the affine vari-
ety given by the ideal 〈Jd,1, Jd,2, Jd,3〉 and among them identify the variety Vd. In 
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practice this algorithm fails even for the simplest case d = 2. In this case we have 
deg(J2,1) = 42, deg(J2,2) = 40, deg(J2,3) = 69 and calculating the Gröbner basis of the 
ideal 〈Jd,1, Jd,2, Jd,3〉 is a huge amount of computations. We use the q-expansion of ti’s 
and we calculate Id,i, i = 1, 2, 3, d = 2, 3. We have written powers of ti in the first row 
and the corresponding coefficients in the second row. For more examples see the author’s 
web-page.1

I2,1 :
(
t31 t21 t1 1
1 −6s1 12s2

1 − 3s2 −8s3
1 + 6s1s2 − 2s3

)

I2,2 :
(
t32 t22 t2 1
1 −18s2 33s2

2 484s3
2 − 500s2

3

)

I2,3 :
(
t33 t23 t3 1
1 −66s3 −1323s3

2 + 1452s2
3 10 584s3

2s3 − 10 648s3
3

)

I3,1 :
(
t41 t31 t21 t1 1
1 −12s1 54s2

1 − 24s2 −108s3
1 + 144s1s2 − 64s3 81s4

1 − 216s2
1s2 − 48s2

2 + 192s1s3

)

I3,2 :
(
t42 t32 t22 t2 1
1 −84s2 246s2

2 63 756s3
2 − 64 000s2

3 576 081s4
2 − 576 000s2s

2
3

)

I3,3 :
(

t43 t33 t23 t3 1
1 −732s3 −169 344s3

2 + 171 534s2
3 11 007 360s3

2s3 − 11 009 548s3
3 −502 020 288s6

2 + 939 266 496s3
2s

2
3 − 437 245 479s4

3

)
The polynomials Id,i, i = 2, 3 have integral coefficients. This follows from the formula (21)
and the fact that geometric modular forms can be defined over a field of characteristic p. 
Our computations show that Id,1 has also integral coefficients. However, the notion of 
a geometric quasi-modular form is only elaborated over a field of characteristic zero 
(see [9]). The proof of such a statement for Id,1 would need a reformulation of the 
definition of geometric quasi-modular forms.

One of the fascinating applications of modular curves X0(d) is formulated in the 
Shimura–Taniyama conjecture, now the modularity theorem. It states that any elliptic 
curve over Q must appear in the decomposition of the Jacobian of X0(d), where d is the 
conductor of the elliptic curve (see [12] for the case of semi-stable elliptic curves and [2]
for the case of all elliptic curves). It would be interesting to know whether the differential 
equation approach of the present article to modular curves has some implications in this 
direction.
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