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Abstract: We describe a Lie Algebra on themoduli space of non-rigid compact Calabi–
Yau threefolds enhanced with differential forms and its relation to the Bershadsky–
Cecotti–Ooguri–Vafa holomorphic anomaly equation. In particular, we describe alge-
braic topological string partition functions Falg

g , g ≥ 1, which encode the polynomial
structure of holomorphic and non-holomorphic topological string partition functions.
Our approach is based on Grothendieck’s algebraic de Rham cohomology and on the
algebraic Gauss–Manin connection. In this way, we recover a result of Yamaguchi–
Yau and Alim–Länge in an algebraic context. Our proofs use the fact that the special
polynomial generators defined using the special geometry of deformation spaces of
Calabi–Yau threefolds correspond to coordinates on such a moduli space. We discuss
the mirror quintic as an example.
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1. Introduction

Mirror symmetry identifies deformation families of Calabi–Yau (CY) threefolds. It orig-
inates from two dimensional sigma models into CY target spaces X̌ and X and two
equivalent twists, which give the A- and the B-model, and which probe the symplectic
and complex geometry of X̌ and X respectively [Wit88,Wit91].

Mirror symmetry is a rich source of far-reaching predictions, especially regarding
the enumerative geometry of maps from genus g Riemann surfaces into a CY threefold
X̌ . The predictions are made by performing computations on the B-model side which
sees the deformations of complex structure of the mirror CY X . The non-trivial step,
which is guided by physics, is to identify the equivalent structures on the A-model side
and match the two.

The first enumerative predictions of mirror symmetry at genus zero were made by
Candelas, de la Ossa, Green and Parkes in Ref. [CDLOGP91]; higher genus predic-
tions were put forward by Bershadsky, Cecotti, Ooguri and Vafa (BCOV) in Refs.
[BCOV93,BCOV94]. To prove these predictions and formulate them rigorously is a
great mathematical challenge.

The formulation of themoduli spaces of stablemaps byKontsevich [Kon95] provided
a mathematical formulation of the A-model and a check of many results confirming the
predictions of mirror symmetry. The computations of Ref. [CDLOGP91] for genus zero
Gromov–Witten invariants were put in a Hodge theoretical context by Morrison in Ref.
[Mor92]. Genus zero mirror symmetry can now be understood as matching two different
variations of Hodge structure associated to X̌ and X , see Refs. [Mor97,CK99,Voi99].

Mirror symmetry at higher genus remains challenging both computationally and
conceptually. A fruitful way to think about higher genus mirror symmetry is through
geometric quantization as proposed by Witten in Ref. [Wit93]. A mathematical refor-
mulation of BCOV for the B-model was put forward by Costello and Li in Ref. [CL12].

In the present work we will follow a different approach and put forward a new
algebraic framework to formulate higher genus mirror symmetry where we can work
over an arbitrary field of characteristic zero. Our approach is based on Grothendieck’s
algebraic de Rham cohomology and Katz–Oda’s algebraic Gauss–Manin connection.
It further builds on results of Yamaguchi–Yau [YY04] and Alim–Länge [AL07], who
uncovered a polynomial structure of higher genus topological string partition functions.
This polynomial structure is based on the variation of Hodge structure at genus zero and
puts forward variants of BCOV equations which can be understood in a purely algebraic
context.

In the algebraic context, surprisingly, no reference to periods or variation of Hodge
structures is needed, as all these are hidden in the so called Gauss–Manin connection
in disguise.1 As a consequence, we do not need to look for an algebraic definition of

1 The terminology arose from a private letter of Pierre Deligne to the second author [Del09].
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the propagators appearing in the BCOV equations. We will see that the propagators can
be expressed as rational functions of the entries of the period matrix. But this is just an
indirect algebraic formulation of the propagators that cannot be used as a definition. The
advantage of the analytic definition is of course that it is inherent that they transform
as sections of bundles on the moduli spaces. Here, we try to combine the best of the
frameworks.

The new way of looking at the Gauss–Manin connection was studied by the second
author, see Ref. [Mov12c] for elliptic curve case, Ref. [Mov12a] for mirror quintic case
and Ref. [Mov13] for a general framework. The richness of this point of view is due
to its base space, which is the moduli space of varieties of a fixed topological type and
enhanced with differential forms. Computations on such moduli spaces were already
implicitly in use by Yamaguchi–Yau [YY04] and Alim–Länge [AL07] without referring
to the moduli space itself; however, its introduction and existence in algebraic geometry
for special cases go back to the works of the second author. Such moduli spaces give
a natural framework for dealing with both automorphic forms and topological string
partition functions. In the case of elliptic curves [Mov12c], the theory of modular and
quasi-modular forms is recovered. In the case of compact Calabi–Yau threefolds we
obtain new types of functions which transcend the world of automorphic forms. In the
present text we develop the algebraic structure for any CY threefold. As an example, we
study the mirror quintic in detail.

In the following, we recall the basic setting of Refs. [Mov13,Mov12a]. For a back-
ground in Hodge theory and algebraic de Rham cohomology we refer to Grothendieck’s
original article [Gro66] or Deligne’s lecture notes in [DMOS82]. Let k be a field of
characteristic zero small enough so that it can be embedded in C. For a non-rigid proe-
jctive Calabi–Yau threefold X defined over k let H3

dR(X) be the third algebraic de Rham
cohomology of X and

0 = F4 ⊂ F3 ⊂ F2 ⊂ F1 ⊂ F0 = H3
dR(X),

be the corresponding Hodge filtration. The intersection form in H3
dR(X) is defined to be

H3
dR(X) × H3

dR(X) → k, 〈ω1, ω2〉 = Tr(ω1 ∪ ω2) := 1

(2π i)3

∫
X

ω1 ∪ ω2. (1)

All the structure above, that is, the de Rham cohomology, its Hodge filtration and inter-
section form, is also defined over k; that is, they do not depend on the embedding k ↪→ C,
see for instance Deligne’s lecture notes [DMOS82]. Let h = dim(F2) − 1 and let � be
the following constant matrix:

� :=
⎛
⎜⎝
0 0 0 −1
0 0 1h×h 0
0 −1h×h 0 0
1 0 0 0

⎞
⎟⎠ . (2)

Here, we use (2h + 2) × (2h + 2) block matrices according to the decomposition
2h + 2 = 1 + h + h + 1 and 1h×h denotes the h × h identity matrix. The following
definition is taken from Ref. [Mov13]. An enhanced Calabi–Yau threefold is a pair
(X, [ω1, ω2, . . . , ω2h+2]), where X is as before and ω1, ω2, . . . , ω2h+2 is a basis of
H3
dR(X). We choose the basis such that

1. It is compatible with the Hodge filtration, that is, ω1 ∈ F3, ω1, ω2, . . . , ωh+1 ∈ F2,
ω1, ω2, . . . , ω2h+1 ∈ F1 and ω1, ω2, . . . , ω2h+2 ∈ F0.
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2. The intersection form in this basis is the constant matrix �:

[〈ωi , ω j 〉] = �. (3)

Let T be the moduli of enhanced Calabi–Yau threefolds of a fixed topological type. The
algebraic group

G :=
{
g ∈ GL(2h + 2, k) | g is block upper triangular and gtr�g = �

}
(4)

acts from the right on T and its Lie algebra plays an important role in our main theorem.

Lie(G) =
{
g ∈ Mat(2h + 2, k) | g is block upper triangular and gtr� + �g = 0

}
.

(5)
Here, by block triangular we mean triangular with respect to the partition 2h + 2 =
1 + h + h + 1. We have

dim(G) = 3h2 + 5h + 4

2
, dim(T) = h + dim(G).

Special geometry and period manipulations suggest that T has a canonical structure of
an affine variety over Q̄ and the action ofG on T is algebraic. We have a universal family
X/T of Calabi–Yau threefolds and by our construction we have elements ω̃i ∈ H3(X/T)

such that ω̃i restricted to the fiber Xt is the chosen ωi ∈ H3
dR(Xt). For simplicity we

write ω̃i = ωi . Here, H3(X/T) denotes the set of global sections of the relative third
de Rham cohomology of X over T. Furthermore, there is an affine variety T̃ such that
T is a Zarski open subset of T̃, the action of G on T extends to T̃ and the quotient T̃/G
is a projective variety (and hence compact). All the above statements can be verified
for instance for mirror quintic Calabi–Yau threefold, see Sect. 5. Since we have now
a good understanding of the classical moduli of Calabi–Yau varieties both in complex
and algebraic context (see respectively Refs. [Vie95] and [Tod03]), verifying the above
statements is not out of reach. For the purpose of the present text either assume that the
universal family X/T over Q̄ exists or assume that T is the total space of the choices of
the basis ωi over a local patch of the moduli space of X . By Bogomolov–Tian–Todorov
Theorem such a moduli space is smooth. We further assume that in a local patch of
moduli space, the universal family of Calabi–Yau threefolds X exists and no Calabi–
Yau threefold X in such a local patch has an isomorphism that acts non-identically on
H3
dR(X). In the last case one has to replace all the algebraic notations below by their

holomorphic counterpart. Let

∇ : H3
dR(X/T) → �1

T ⊗OT H3
dR(X/T)

be the algebraic Gauss–Manin connection of the family X/T due to Katz–Oda [KO68],
where OT is the Q̄-algebra of regular functions on T and �1

T is the OT-module of
differential 1-forms in T. For any vector field R in T, let ∇R be the Gauss–Manin
connection composed with the vector field R. We write

∇Rω = ARω,

where AR is a (2h+2)× (2h+2) matrix with entries inOT and ω := [ω1, . . . , ω2h+2]tr.
To state our main theorem we will introduce some physics notation that will be

useful in the rest of the paper. We split the notation for the basis ω in the following way
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[ω1, ω2, . . . , ω2h+2] = [α0, αi , β
i , β0], i = 1, 2, . . . ,h. The distinction between upper

and lower indices here does not yet carry particular meaning. They are chosen such that
they are compatible with the physics convention of summing over repeated upper and
lower indices. We will write out matrices in terms of their components, denoting by an
index i the rows and an index j the columns. We further introduce δ

j
i , which is 1 when

i = j and zero otherwise.

Theorem 1. We have the following

1. There are unique vector fields Rk, k = 1, 2, . . . ,h in T and unique Calg
i jk ∈

OT, i, j, k = 1, 2, . . . ,h symmetric in i, j, k such that

ARk =

⎛
⎜⎜⎝
0 δ

j
k 0 0

0 0 Calg
ki j 0

0 0 0 δi
k

0 0 0 0

⎞
⎟⎟⎠ , (6)

Further
Ri1C

alg
i2i3i4

= Ri2C
alg
i1i3i4

. (7)

2. For any g ∈ Lie(G) there is also a unique vector field Rg in T such that

ARg = gtr. (8)

Our proof of Theorem 1 is based on techniques from special geometry which deal
with periods of Calabi–Yau varieties, see for instanceRefs. [CdlO91,CDLOGP91,Str90,
CDF+97,Ali13] and Sect. 2.1. For particular examples, such as the mirror quintic, one
can give an algebraic proof which is merely computational, see Sect. 5. Further partial
results in this direction are obtained in Ref. [Nik14]. The vector fieldsRg can be derived
from the action ofG on T and (8) can be proved in a purely algebraic context. This will
be discussed in subsequent works.

The OT-module G generated by the vector fields

Ri , Rg, i = 1, 2, . . . ,h, g ∈ Lie(G), (9)

form a dim(T)-dimensional Lie algebra with the usual bracket of vector fields. In the
case of enhanced moduli of elliptic curves, one gets the classical Lie algebra sl2, see for
instance Refs. [Mov12b,Gui07]. Our main motivation for introducing such vector fields
is that they are basic ingredients for an algebraic version of the Bershadsky–Cecotti–
Ooguri–Vafa holomorphic anomaly equations [BCOV93,BCOV94]. First, we choose a
basis of Lie(G):

tab :=

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 1

2 (δ
i
aδ

j
b + δi

bδ
j
a ) 0 0

0 0 0 0

⎞
⎟⎟⎠

tr

, ta =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

−δi
a 0 0 0

0 δ
j
a 0 0

⎞
⎟⎟⎠

tr

, t :=
⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

−1 0 0 0

⎞
⎟⎠

tr

,

ka :=
⎛
⎜⎝

0 0 0 0
δa

i 0 0 0
0 0 0 0
0 0 δa

j 0

⎞
⎟⎠

tr

, ga
b :=

⎛
⎜⎜⎝
0 0 0 0
0 −δa

i δ
j
b 0 0

0 0 δi
bδ

a
j 0

0 0 0 0

⎞
⎟⎟⎠

tr

, g0 :=
⎛
⎜⎝

−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠

tr

(10)
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andwe call it the canonical basis. The Lie algebra structure ofG is given by the following
tables.

Rg0 Rgd
c

Rtcd Rtc

Rg0 0 0 0 −Rtc
Rga

b
0 0 −δa

cRtbd − δa
dRtbc −δa

cRtb

Rtab 0 δd
aRtbc + δd

bRtac 0 0
Rta Rta δd

aRtc 0 0
Rt 2Rt 0 0 0
Rka Rka −δa

cRkd − 1
2 (δ

a
cRtd + δa

dRtc ) −2δa
cRt

Ra −Ra δd
aRc

1
2 (C

alg
adeRge

c
+ Calg

aceRge
d
) −2Rtac + Calg

aceRke

(11)

Rt Rkc Rc

Rg0 −2Rt −Rkc Rc
Rga

b
0 δc

bRka −δa
cRb

Rtab 0 1
2 (δ

c
aRtb + δc

bRta ) − 1
2 (C

alg
cbdRgd

a
+ Calg

acdRgd
b
)

Rta 0 2δc
aRt 2Rtac − Calg

acdRkd

Rt 0 0 Rtc
Rka 0 0 −δa

cRg0 + Rga
c

Ra −Rta δc
aRg0 − Rgc

a
0

(12)

The genus one topological string partition function Falg
1 belongs to log(O∗

T), where
O∗

T is the set of invertible regular functions in T, and it satisfies the following equations:

Rg0F
alg
1 = −1

2
(2 + h +

χ

12
), (13)

Rga
b
Falg
1 = −1

2
δb

a , (14)

RgF
alg
1 = 0, all other g of the canonical basis of Lie(G). (15)

Here, χ is the Euler number of the Calabi–Yau variety X . The genus g topological string
partition function Falg

g ∈ OT turns out to be a regular function in T. The holomorphic
anomaly equations in the polynomial formulation of Refs. [YY04,AL07] can be written
in terms of vector fields:

RtabFalg
g = 1

2

g−1∑
h=1

RaF
alg
h RbF

alg
g−h +

1

2
RaRbF

alg
g−1,

RkaF
alg
g = 0,

Rg0F
alg
g = (2g − 2)Falg

g ,

Rgb
a
Falg

g = 0.

(16)

The functions Falg
g are not defined uniquely by the algebraic holomorphic anomaly

equation as above. LetS be the moduli of (X, ω1), where X is a Calabi–Yau threefold as
above and ω1 is a holomorphic differential 3-form on X . We have a canonical projection
T → Swhich is obtained by neglecting all ωi ’s except ω1. It is characterized by the fact
that f ∈ OS does not depend on the choice of ω2, . . . , ω2h+2. We also expect that S
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has a canonical structure of an affine variety over Q̄ such that T → S is a morphism of
affine varieties. We get a sub-algebraOS ofOT which is characterized by the following:

Theorem 2. We have ⋂
g∈ canonical basis g�=g0

ker(Rg) = OS, (17)

where we regard a vector field in T as a derivation in OT.

This means that Falg
g , g ≥ 2 (resp. Falg

1 ) is defined up to addition of an element

of OS (resp. log(O∗
S)), which is called the ambiguity of Falg

g . The algebra OT can be
considered as a generalization of the classical algebra of quasi-modular forms. For a
discussion of the q-expansion of its elements see Refs. [YY04,AL07,Mov11]. Once we
compute the q-expansion of a set of generators of the algebra OT we substitute them in
Falg

g and compute the Gromov–Witten invariants of the A-model Calabi–Yau threefold
X̌ , see Sect. 5 for the case of mirror quintic. The results are based on a considerable
amount ofmachine andhand computations,which are suppressed in this paper to enhance
readability.

The text is organized in the following way. In Sect. 2 we review basic facts about
special geometry, the original BCOV holomorphic anomaly equation, the polynomial
structure of topological string partition functions. Newmanipulations of periods inspired
by our geometric approach are explained in Sects. 3.2 and 3.4. In these sections we work
in the analytic setting, i.e. with complex differential geometry. Themain aspect of Sect. 3,
however, is that the results admit an algebraic formulation. This fact is essential for Sect. 4
which is dedicated to the proofs of our main theorems.We start with a brief discussion of
how the analytic and algebraic settings are related in general, and we explain the various
descriptions of the topological string partition functions and their interrelations between
the analytic and algebraic formulations. Then, in Sect. 4.2 we first recall the definition
of a generalized period domain for Calabi–Yau threefolds. Via the generalized period
maps, we interpret the polynomial generators and topological string partition functions
as functions on the moduli space T. The algebraic content of the period manipulations of
special geometry are explained in Sect. 4.6. Explicit computations of the vector fields (9)
and the construction of the moduli space T in the case of mirror quintic is explained in
Sect. 5. Finally, in Sect. 6 we review some works for the future and possible applications
of our algebraic anomaly equation.

2. Holomorphic Anomaly Equations

In this section we review some basic formulas used in special geometry of Calabi–
Yau threefolds. We use physics conventions of writing out the components of geometric
objects and for handling indices. In general (lower) upper indiceswill denote components
of (co-) tangent space. Identical lower and upper indices are summed over, i. e. xi yi :=∑

i x i yi . For derivatives w.r.t. coordinates xi we will write ∂i := ∂
∂xi and ∂ı̄ := ∂

∂ x̄ ı̄ .

The inverse of a matrix [Mi j ] is denoted by [Mi j ]. We define δi
j to be 1 if i = j and 0

otherwise.
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2.1. Special geometry. By Bogomolov–Tian–Todorov the moduli space M of pro-
jective Calabi–Yau threefolds is smooth and hence we can take local coordinates
z = (z1, z2, . . . , zh) ∈ (Ch, 0) for an open set U in such a moduli space. In our context,
M is just the quotient of T by the action of the algebraic groupG. We denote by� = �z
a holomorphic family of 3-forms on the Calabi–Yau threefold Xz . The geometry of M
can be best described using the third cohomology bundleH → M, where the fiber ofH
at a point z ∈ M isHz = H3(Xz,C). This bundle can be decomposed into sub-bundles
in the following way:

H = L ⊕ (L ⊗ TM) ⊕ (L ⊗ TM) ⊕ L, (18)

where L is the line bundle of holomorphic (3, 0) forms in Xz , TM denotes the holo-
morphic tangent bundle and the overline denotes complex conjugation. This structure
gives the Hodge decomposition of the variation of Hodge structure arising from the
Calabi–Yau threefolds Xz . It carries the intersection form in cohomology

〈·, ·〉 : H × H → C,

which is given by the same formula as in (1). Let

∂i = ∂/∂zi , ∂j̄ = ∂/∂ z̄j

These are sections of TM and � is a section of L. We get in canonical way global
sections of the (symmetric) tensor product of L, TM and T ∗M which form a basis at
each fiber. Any other section can be written as a linear combination of such a basis and
we treat such coefficients as if they are sections themselves. Let

K := − log〈�,�〉,
be the Kähler potential. It provides a Kähler form for a Kähler metric on M, whose
components and Levi–Civita connection are given by:

Gi j̄ := ∂i∂j̄ K , 
k
i j = Gkk̄∂i G jk̄ . (19)

The description of the change of the decomposition of H into sub-bundles is captured
by the holomorphic Yukawa couplings or threepoint functions

Ci jk := −〈�, ∂i∂ j∂k�〉 ∈ 

(
L2 ⊗ Sym3T ∗M

)
, (20)

which satisfy
∂ı̄ Ci jk = 0, Di C jkl = D j Cikl , (21)

the curvature is then expressed as [BCOV94]:

[∂̄ı̄ , Di ]l j = ∂̄ı̄

l
i j = δl

i G j ı̄ + δl
j Gi ı̄ − Ci jkC

kl
ı̄ , (22)

where
C

jk
ı̄ := e2K Gkk̄ G j j̄ Cı̄k̄j̄ , (23)

and where Di is the covariant derivative defined using the connections 
k
i j and Ki , for

example for Ak
j a section of Ln ⊗ T ∗M ⊗ TM we have

Di Ak
j := ∂i Ak

j − 
m
i j Ak

m + 
k
im Am

j + n Ki Ak
j .

We further introduce the objects Si j , Si , S, which are sections of L−2 ⊗ Symm TM
withm = 2, 1, 0, respectively, and give local potentials for the non-holomorphicYukawa
couplings:

∂ı̄ Si j = C
i j
ı̄ , ∂ı̄ S j = Giı̄ Si j , ∂ı̄ S = Giı̄ Si . (24)
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2.2. Special coordinates. We pick a symplectic basis {AI , BJ }, I, J = 0, . . . ,h of
H3(Xz,Z), satisfying

AI · BJ = δ J
I , AI · AJ = 0, BI · BJ = 0, (25)

We write the periods of the holomorphic (3, 0) form over this basis:

X I (z) :=
∫

AI
�z, FJ (z) :=

∫
BJ

�z . (26)

The periods X I (z),FJ (z) satisfy the Picard–Fuchs equations of the Calabi–Yau family
Xz . The periods X I can be identified with projective coordinates on M and FJ with

derivatives of a homogeneous function F(X I ) of weight 2 such that FJ = ∂F(X I )

∂ X J . In a

patch where X0(z) �= 0 a set of special coordinates can be defined

ta = Xa

X0 , a = 1, . . . ,h. (27)

The normalized holomorphic (3, 0) form �̃t := (X0)−1�z has the periods:
∫

A0,Aa ,Bb,B0

�̃t = (
1, ta, Fb(t), 2F0(t) − tc Fc(t)

)
, (28)

where

F0(t) = (X0)−2F and Fa(t) := ∂a F0(t) = ∂ F0(t)

∂ta
.

F0(t) is the called the prepotential and

Cabc = ∂a∂b∂c F0(t). (29)

are the Yukawa coupling in the special coordinates ta . See Refs. [CDF+97,Ali13] for
more details.

2.3. Holomorphic anomaly equations. The genus g topological string amplitude Fnon
g

are defined in Ref. [BCOV93] for g = 1 and Ref. [BCOV94] for g ≥ 2. It is a section
of the line bundle L2−2g overM. They are related recursively in g by the holomorphic
anomaly equations [BCOV93]

∂̄ı̄∂ jFnon
1 = 1

2
C jklC

kl
ı̄ + (1 +

χ

24
)G jı̄ , (30)

where χ is the Euler character of B-model CY threefold, and [BCOV94]

∂̄ı̄Fnon
g = 1

2
C

jk
ı̄

⎛
⎝

g−1∑
r=1

D jFnon
r DkFnon

(g−r) + D j DkFnon
g−1

⎞
⎠ . (31)

Note that DiFnon
g is a section of L2−2g ⊗ T ∗M.
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2.4. Polynomial structure. InRef. [YY04] itwas shown that the topological string ampli-
tudes for the mirror quintic can be expressed as polynomials in finitely many generators
of differential ring of multi-derivatives of the connections of special geometry. This con-
struction was generalized in Ref. [AL07] for any CY threefold. It was shown there that
Fnon

g is a polynomial of degree 3g − 3 in the generators Si j , Si , S, Ki , where degrees
1, 2, 3, 1were assigned to these generators respectively. The proof was given inductively
and relies on the closure of these generators under the holomorphic derivative [AL07].
The purely holomorphic part of the construction as well as the coefficients of the mono-
mials would be rational functions in the algebraic moduli, this was further discussed in
Refs. [ALM10,Hos08].

It was further shown in Ref. [AL07], following Ref. [YY04], that the L.H.S. of
Eq. (31) could be written in terms of the generators using the chain rule:

∂ı̄Fnon
g = C

jk
ı̄

∂Fnon
g

∂S jk
+ Giı̄

(
Si j

∂Fnon
g

∂S j
+ Si

∂Fnon
g

∂S
+

∂Fnon
g

∂Ki

)
, (32)

assuming the linear independence of C
jk
ı̄ and Giı̄ over the field generated by the gener-

ators in Definition 1, the holomorphic anomaly equations (31) could then be written as
two different sets of equations [AL07]:

∂Fnon
g

∂S jk
= 1

2

g−1∑
r=1

D jFnon
r DkFnon

(g−r) +
1

2
D j DkFnon

(g−1), (33)

Si j
∂Fnon

g

∂S j
+ Si

∂Fnon
g

∂S
+

∂Fnon
g

∂Ki
= 0. (34)

This linear independence assumption is not at all a trivial statement. Its proof in the one
parameter case can be done using a differential Galois theory argument as in the proof
of Theorem 2 in [Mov11] and one might try to generalize such an argument to multi
parameter case. However, for the purpose of the present text we do not need to prove it.
The reason is that (33) and (34) always have a solution which gives a solution to (32).

3. Algebraic Structure of Topological String Theory

In this section we develop the new ingredients and tools which will allow us to phrase
the algebraic structure of topological string theory.We start by enhancing the differential
polynomial ring of Ref. [AL07] with further generators which parameterize a choice of
section of the line bundle L and a choice of coordinates as was done in Ref. [ASYZ13]
for one dimensional moduli spaces. We will then show that these new generators para-
meterize different choices of forms compatible with the Hodge filtration and having
constant symplectic pairing.

3.1. Special polynomial rings. We first fix the notion of holomorphic limit discussed in
Ref. [BCOV94]. For our purposes we think of the limit as an assignment:

e−K |hol = h0 X0, Gi j̄ |hol = haj̄

∂ta

∂zi
(35)

for a given choice of section X0 of L and a choice of special coordinates ta where h0 is
a constant and haı̄ denote the components of a constant matrix.
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Definition 1. The generators of the special polynomial differential ring are defined by

g0 := h−1
0 e−K , (36)

ga
i := e−K Gi j̄ hj̄a, (37)

T ab := ga
i gb

j Si j , (38)

T a := g0 ga
i (Si − Si j K j ), (39)

T := g2
0(S − Si Ki +

1

2
Si j Ki K j ), (40)

La = g0(g
−1)i

a∂i K . (41)

We will use the same notation for these generators and for their holomorphic limit.

Proposition 1. The generators of the special polynomial ring satisfy the following dif-
ferential equations, called the differential ring:

∂ag0 = −La g0, (42)

∂agb
i = gc

i

(
δb

a Lc − Ccad T bd + g0 sb
ca

)
, (43)

∂aT bc = δb
a(T c + T cd Ld) + δc

a(T b + T bd Ld) − CadeT bd T ce + g0 hbc
a , (44)

∂aT b = 2δb
a(T + T c Lc) − T b La − kacT bc + g2

0 hb
a , (45)

∂aT = 1

2
CabcT bT c − 2LaT − kabT b + g3

0 ha , (46)

∂a Lb = −La Lb − CabcT c + g−2
0 kab. (47)

Proof. The first two equations follow from Definition 1 and the special geometry dis-
cussed in Sect. 2.1, the other equations follow from the definitions and the equations
which were proved in Ref. [AL07]. ��

The generators g0, ga
i are chosen such that their holomorphic limits become:

g0|hol = X0, ga
i |hol = X0 ∂ta

∂zi
, (48)

In these equations the functions sk
i j , h jk

i , h j
i , hi and ki j are fixed once a choice of

generators has beenmade andwe transformed the indices fromarbitrary local coordinates
to the special coordinates using ga

i and its inverse.
The freedom in choosing the generators Si j , Si , S was discussed in Refs. [ALM10,

Hos08] and translates here to a freedom of adding holomorphic sections E i j , E i , E of
L−2 ⊗ Symm TM with m = 2, 1, 0, respectively to the generators as follows:

T ab → T ab + ga
i gb

j E i j , (49)

T a → T a + g0 ga
i E i , (50)

T → T + g2
0E . (51)

It can be seen from the equations that there is additional freedom in defining the
generators g0, ga

i and La given by:

La → La + g0(g
−1)i

aEi , (52)
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g0 → Cg0 , (53)

ga
i → Ci

j g
a
i , (54)

where C denotes a holomorphic function, Ci
j a holomorphic section of TM⊗ T ∗M and

Ei a holomorphic section of T ∗M.
The number of special polynomial generators matches dim(G), whereG is the alge-

braic group in the Introduction.

Definition 2. We introduce:
F̃non

g := g2g−2
0 Fnon

g , (55)

which defines a section of L2g−2
. After taking the holomorphic limit discussed earlier

we getFhol
g whichwill be a holomorphic function (and no longer a section) on themoduli

space M.

Proposition 2. F̃non
g ’s satisfy the following equations:

(
g0

∂

∂g0
+ La

∂

∂La
+ T a ∂

∂T a
+ 2T

∂

∂T

)
F̃non

g = (2g − 2)F̃non
g (56)

(
ga

m
∂

∂gb
m
+ 2T ac ∂

∂T bc
+ T a ∂

∂T b
− Lb

∂

∂La

)
F̃non

g = 0, (57)

(
∂

∂T ab
− 1

2
(Lb

∂

∂T a
+ La

∂

∂T b
) +

1

2
La Lb

∂

∂T

)
F̃non

g

= 1

2

g−1∑
r=1

∂aF̃non
r ∂bF̃non

g−r +
1

2
∂a∂bF̃non

g−1, (58)

∂F̃non
g

∂La
= 0. (59)

Fhol
g ’s satisfy the same equations in the holomorphic limit.

Proof. The first two equations follow from the definition of F̃non
g and the proof of Ref.

[AL07], bearing in mind that the dependence on the generators g0, ga
i is introduced

through the definition of the special polynomial generators and the factor g2g−2
0 in F̃non

g .
The third and fourth equation are a re-writing of Eq. (33) using the special polynomial
generators defined earlier. ��

3.2. Different choices of Hodge filtrations. In order to parameterize the moduli space
of a Calabi–Yau threefold enhanced with a choice of forms compatible with the Hodge
filtration and having constant intersection, we seek to parameterize the relation between
different choices of Hodge filtrations. We start with a non-holomorphic choice of a
Hodge filtration �ωz defined by arbitrary local coordinates on the moduli space and relate
this to a choice of filtration in special coordinates �ωt . The choices are given by

�ωz =

⎛
⎜⎜⎝

αz,0
αz,i

β i
z

β0
z

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�

∂i�

(C−1
� )ik∂�∂k�

∂�(C
−1
� )�k∂∗∂k�

⎞
⎟⎟⎠ , (60)
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where Ci jk are given by (20). Here, A� = (g−1)i∗ Ai , where ∗ denotes a fixed choice
of special coordinate. One can write the holomorphic anonaly equation of [BCOV94]
using the non-holomorphic basis �ωz which is different from the standard holomorphic
basis. This is the following after taking holomorphic limit

�ωt =
⎛
⎜⎝

αt,0
αt,a
βa

t
β0

t

⎞
⎟⎠ =

⎛
⎜⎜⎝

�̃

∂a�̃

(C−1∗ )ae∂∗∂e�̃

∂∗(C−1∗ )∗e∂∗∂e�̃

⎞
⎟⎟⎠ , (61)

where �̃ = �̃t is given by (28) and ∗ denotes a fixed choice of special coordinate.

Proposition 3. The period matrix of �ωt over the symplectic basis of H3(Xz,Z) given in
Eq. (25) has the following special format:

[
∫

A0,Ac,Bc,B0

⎛
⎜⎝

αt,0
αt,a
βa

t
β0

t

⎞
⎟⎠] =

⎛
⎜⎜⎝
1 tc Fc 2F0 − td Fd

0 δc
a Fac Fa − td Fad

0 0 δa
c −ta

0 0 0 −1

⎞
⎟⎟⎠ , (62)

with Fa := ∂a F0, ∂a = ∂
∂ta .

Proof. This follows from the defitions of Sect. 2.2. ��
Proposition 4. The symplectic form for both bases �ωz and �ωt is the matrix � in (2).

Proof. The computation of the symplectic form for �ωt follows from the Proposition 3.
The symplectic form of �ωz follows from the definition of Ci jk in (20) and from Griffiths
transversality, for instance,∫

Xz

∂i� ∧ (C−1
� ) jk∂�∂k� = −(C−1

� ) jk
∫

Xz

� ∧ ∂i∂�∂k� = (C−1
� ) jkC�ik = δ

j
i . (63)

��
Proposition 5. The flat choice �ωt satisfies the following equation:

∂b

⎛
⎜⎜⎝

�̃

∂a�̃

(C−1∗ )ae∂∗∂e�̃

∂∗(C−1∗ )∗e∂∗∂e�̃

⎞
⎟⎟⎠ =

⎛
⎜⎝
0 δc

b 0 0
0 0 Cabc 0
0 0 0 δa

b
0 0 0 0

⎞
⎟⎠

⎛
⎜⎜⎝

�̃

∂c�̃

(C−1∗ )ce∂∗∂e�̃

∂∗(C−1∗ )∗e∂∗∂e�̃

⎞
⎟⎟⎠ . (64)

Proof. This follows from Eq. (62). ��
We now want to find the matrix relating:

�ωt = B · �ωz, (65)

and express its entries in terms of the polynomial generators. The matrix B is given by:

B =

⎛
⎜⎜⎝

g−1
0 0 0 0

g−1
0 La (g−1)i

a 0 0
−g−1

0 T̂ a (g−1)i
d T̂ ad ga

i 0
−g−1

0

(
2T + T̂ d Ld

)
+ g0H (g−1)i

d(T d + T̂ de Le) + g0Hi ge
i Le g0

⎞
⎟⎟⎠ , (66)
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where a is an index for the rows and i for the columns and where:

T̂ a = T a − g0 gd
i Em, (67)

T̂ ab = T ab − ga
m gb

n Emn, (68)

H = g∗
j (g

−1)i∗(∂iE j + CimnE l jEm − h j
i ) (69)

Hi = g∗
m(g−1)n∗(−∂nE im − CnlkE ilEkm + δi

nEm + him
n ) (70)

E ik = (C−1
� )i j sk

� j , (71)

E i = (C−1
� )i j k� j . (72)

The computation of G is done using the chain rule and the equalities in Proposition 1.
>From Proposition 4 and the definition of the algebraic groupG it follows that Btr ∈ G.
This can be also verified using the explicit expression of B in (66). Note that we have
written the matrix B after inserting the freedom in choosing the generators Si j , Si , S in
(49) till (54). In this way the ambiguities E, h j

i e.t.c. appear in the expression of B and
we get the most general base change B · �ωz such that B ∈ G.

3.3. Lie Algebra description. In the following, we regard all the generators as indepen-
dent variables and compute the following matrices:

Mg = ∂

∂g
B · B−1, (73)

where g denotes a generator and ∂g := ∂
∂g . We find

MT ab =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

−δi
a Lb

1
2 (δi

aδ
j
b + δi

bδ
j
a ) 0 0

−La Lb δ
j
b La 0 0

⎞
⎟⎟⎠ ,

MT a =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

−δi
a 0 0 0

−2La δ
j
a 0 0

⎞
⎟⎟⎠ ,

MT =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0

−2 0 0 0

⎞
⎟⎟⎠ , (74)

MLa =

⎛
⎜⎜⎝

0 0 0 0
δa

i 0 0 0
0 0 0 0
0 0 δa

j 0

⎞
⎟⎟⎠ ,

Mg0 =

⎛
⎜⎜⎝

−g−1
0 0 0 0

−g−1
0 Li 0 0 0

g−1
0 T i 0 0 0

2g−1
0 (2T0 + T d Ld) −g−1

0 T j −g−1
0 L j g−1

0

⎞
⎟⎟⎠ .
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Mga
m

=

⎛
⎜⎜⎜⎝

0 0 0 0

gm
i La −δ

j
a gm

i 0 0

T id gm
d La + δi

a gm
d (T d + T de Le) −δi

a T jd gm
d − δ

j
a T id gm

d δi
a(g−1)m

j 0

2La gm
d (T d + T de Le) −δ

j
a gm

d (T d + T de Le) − gm
d T d j La (g−1)m

j La 0

⎞
⎟⎟⎟⎠ ,

(75)

We now look for combinations of the vector fields which give constant vector fields. We
find the following:

tab = MT ab − 1

2
(La MT b + LbMT a ) +

1

2
La LbMT ,

ta = MT a − LaMT ,

t = 1

2
MT , (76)

ka = MLa ,

ga
b = ga

mM∂gb
m

− LbMLa + 2T adMT db + T aMT b ,

g0 = g0Mg0 + LaMLa + T aMT a + 2MT .

Therefore, we get all the elements of the Lie algebra Lie(G) and for each g ∈ Lie(G) a
derivation Rg in the generators.

3.4. Algebraic master anomaly equation. In genus zero we have

Cabc = Ci jk(g
−1)i

a(g−1)
j
b(g

−1)k
c g0, (77)

Its holomorphic limit is (29) and for simplicity we have used the same notation. The
anomaly equations read:

Rg0Cabc = Cabc, (78)

Rgb
a
Ccde = −δb

c Cade − δb
dCcae − δb

e Ccda, (79)

and in genus one we obtain the anomaly equations (13) and (16) in the holomorphic
context. We combine all Fhol

g into the generating function:

Z = exp
∞∑

g=1

λ2g−2 Fhol
g . (80)

The master anomaly equations become:

Rg0 Z =
(

−2 + h
2

− χ

24
+ θλ

)
Z , (81)

Rgb
a

Z = −1

2
δb

a Z , (82)

Rtab Z = λ2

2
RaRb Z , (83)

Rka Z = 0, (84)
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Rta Z = λ2
(
− χ

24
+ θλ

)
Ra Z , (85)

RtZ = λ2

2

(
− χ

24
+ θλ

) (
− χ

24
− 1 + θλ

)
Z . (86)

4. Proofs

So far, we have used the language of special geometry in order to find several derivations
in the special polynomial ring generators. This is essentially the main mathematical
content of period manipulations in the B-model of mirror symmetry. In this section
we interpret such derivations as vector fields in the moduli space T introduced in the
Introduction and hence prove Theorems 1 and 2. We denote an element of T by t and
hopefully it will not be confused with the special coordinates t of Sect. 2.2.

4.1. Holomorphic versus algebraic description. In order to give this interpretation we
first need to relate the derivations found in the framework of special geometry, i.e.,
complex differential geometry, to the framework of algebraic geometry used in the
Introduction.

The main observation is the following. Since polynomials over C can be viewed as
holomorphic functions, an affine variety X ⊂ A

n
C
is also closed in the analytic topology

on Cn and hence defines a complex analytic space. If X is smooth, it is even a complex
submanifold. This assignment behaves well under gluing, and hence can be extended to
the setting of projective varieties.More precisely, there is a functor, called analytification,
from the category of schemes of finite type over C to the category of analytic spaces
that associates to a scheme X its analytification X an. Furthermore, there is a natural
morphism of locally ringed spaces α : (X an,Ohol

Xan) → (X,OX ) such that an is universal
with this property, and is the identity on points. Here, Ohol

Xan is the sheaf of holomorphic
functions on X an, while OX is the structure sheaf of the variety X . If X is smooth, then
X an is a complex manifold.

In the analytic setting, the holomorphic de Rham cohomology of the complex man-
ifold X an is defined as the hypercohomology Hi

dRan(X an) = Hi (X an,�•
Xan) of the

holomorphic de Rham complex. The latter is built from the sheaf of holomorphic dif-
ferential p-forms on X an. In a similar manner in the algebraic setting, the algebraic de
Rham cohomology of the smooth variety X over C is defined as the hypercohomology
Hi
dR(X) = Hi (X,�•

X ) of the algebraic de Rham complex. The latter is built from the
p-th exterior product of the sheaf of Kähler differentials over C on X .

The observation that any algebraic differential is holomorphic yields a natural mor-
phismof complexesα−1�•

X → �•
Xan which induces amapα∗ : Hi

dR(X) → Hi
dRan(X an)

on cohomology. Serre has shown that if X is smooth and projective, then α∗ is an isomor-
phism. This allows us to go back and forth from the analytic to the algebraic description
at the level of cohomology. The analytifcation functor is also compatible with inverse
and direct images. This property can be used to show that the algebraic and analytic
Gauss–Manin connections are compatible.

This change of framework is important from the arithmetic point of view. It is well
known that the Fourier coefficients of the topological string partition functionsFg satisfy
integrality properties. The algebraic framework allows us to change the base field from
C to, say, the fieldQ of algebraic numbers, in which such arithmetic questions are more
natural to study.
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The results of Sect. 3 are originally derived for differential forms in complex geom-
etry. The manipulations though were purely algebraic, hence as far as cohomological
quantities are concerned they are also valid in the algebraic setting. In particular, the
change of trivialization of the Hodge bundle in (65) also holds in the algebraic de Rham
cohomology.

As far as the topological string partition functions Fg in the analytic and the algebraic
setting are concerned, they cannot directly be compared due to the fact that the globalmap
of the moduli spaceM into the classical period domain is known to be nonalgebraic in
the case of Calabi–Yau threefolds. The embedding itself is not known (which manifests
itself in the absence of a global Torelli theorem for Calabi–Yau threefolds). For these
reasons, there are various versions of the topological string partition function. In Sect. 2.3
we introduced the nonholomorphic topological string partition function Fnon

g which is a
nonholomorphic section of a line bundle over M. In Sect. 3.1 we defined the notion of
the holomorphic limit f �→ f |hol which yields holomorphic sections Fhol

g = Fnon
g |hol,

still overM. In the algebraic setting of the Introduction, we considered regular functions
Falg

g ∈ OT, which are living on the moduli space T of enhanced Calabi–Yau threefolds,

a much bigger space than M. In order to relate Falg
g to Fhol

g we would need a regular
embeddingM → T . As in the classical case, such an embedding is not known and also
not expected to be regular.Aworkaround to this problemwasfirst suggested in [Mov12a].
It consists of restricting to appropriate open subsetsU ⊂ M andH ⊂ T, respectively.U
can be thought of as a neighborhood around the point of maximal unipotent monodromy
of the family π : X → M, while H is chosen such that the generalized period map of
the family X → T takes the standard form in special geometry, see Definition 3 below.
With these choices, the relation between the analytic and the algebraic versions of the
topological string partition function is

Fhol
g (X an)|U = Falg

g (X)|H,

and similarly for the Yukawa couplings

Ci jk |U = Calg
i jk |H

as formal power series in variables q1, . . . , qh. These formal power series are expected
to be Fourier series of generalized automorphic forms on the generalized period domain
T. The left hand side has been worked out in [BCOV94] while the right hand side is the
main focus of the present work and will be discussed below in more detail when proving
the statements from the Introduction. This is new in the sense that we provide a purely
algebraic framework for the topological string partition functions which does not rely
anymore on analytic, i.e. Kähler geometry. Instead they are solutions to a set of algebraic
differential equations, the algebraic version of the holomorphic anomaly equations. The
advantage is that it is not necessary to look for an algebraic version of the propagators,
even though it is implicitly provided.

4.2. Generalized period domain. The generalized period domain � introduced in Ref.
[Mov13], is the set of all (2h + 2) × (2h + 2)-matrices P with complex entries which
satisfiesPtr�P = � and a positivity conditionwhich can be derived from the description
below. Here, � is the standard symplectic matrix and � is given in (3). The symplectic
group Sp(2h + 2,Z) acts on � from the left and the quotient

U := Sp(2h + 2,Z)\�,
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parameterizes the set of all lattices L inside H3
dR(X0) such that the data (L , H3

dR(X0),

F∗
0 , 〈·, ·〉) form a polarized Hodge structure. Here, X0 is a fixed Calabi–Yau threefold as

in the Introduction and H3
dR(X0), F∗

0 , 〈·, ·〉 are its de Rham cohomology, Hodge filtration
and intersection form, respectively. It is defined in such a way that we have the period
map

P : T → U, t �→ [
∫

δi

ω j ], (87)

where t now represent the pair (X, ω), δi is a symplectic basis of H3(X,Z). In order to
have a modular form theory attached to the above picture, one has to find a special locus
H in T. In the case of Calabi–Yau threefolds special geometry in Sect. 2.1 gives us the
following candidate.

Definition 3. We define H to be the set of all elements t ∈ T such that P(t)tr is of the
form (62).

In the case of elliptic curves the set H is biregular to a punctured disc of radius one,
see Ref. [Mov12c]. In our context we do not have a good understanding of the global
behavior of H. This is related to the analytic continuation of periods of Calabi–Yau
threefolds. The set H is neither an algebraic nor an analytic subvariety of T. One can
introduce a holomorphic foliation in T withH as its leaf and study its dynamics, see for
instance [Mov08] for such a study in the case of elliptic curves. For the purpose of q-
expansions, one only needs to know that a local patch ofH is biregular to a complement
of a normal crossing divisor in a small neighborhood of 0 in C

h.
In this abstract context of periods, we think of t i as h independent variables and of F0

as a function in the t i ’s. The restriction of the ring of regular functions in T toH gives a
C-algebra which can be considered as a generalization of quasi-modular forms. We can
do q-expansion of such functions around a degeneracy point of Calabi–Yau threefolds,
see Ref. [Mov13] for more details.

4.3. Proof of Theorem 1. First, we assume that k = C and work in a local patch U of
the moduli space of Calabi–Yau threefolds Xz(t), t ∈ U , where z(t) is the inverse map
to (27). Therefore, we have assumed that over U the universal family X of Calabi–Yau
threefolds exists. In (61) we have defined �ωt and in Proposition 3 we have proved that
(Xz(t), �ωt ) ∈ H. Therefore by the discussion in Sect. 4.1, we have the following map

f : U → H, t �→ (Xz(t), �ωt ). (88)

Here, we implicitly use the fact that these objects both have an analytic and an algebraic
description. In particular, the entries of the matrix B in (66) are rational functions in
zi (t), i = 1, 2, . . . ,h and the generators in Definition 1. The Gauss–Manin connection
matrix restricted to the image of the map (88) and computed in the flat coordinates t is
just

∑h
i=1 Ãi dt i , where Ãi is the matrix computed in (64). The analytic functions Ci jk |U

appearing there, however, are now replaced by their algebraic counterparts,Calg
i jk |H. From

this we get the Gauss–Manin connection matrix in the basis B �ωt :

dB · B−1 +
h∑

i=1

Ãi dt i . (89)
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We consider the generators in Definition 1 as independent variables

x1, x2, . . . , xa, a := dim(G)

independent of zi ’s, and so, we write B = Bz,x and Ãi = Ãi,z,x . We get an open subset
V of U × C

a such that for (t, x) ∈ V we have Bz(t),x ∈ G. In this way

Ũ := {(t,Bz(t),x �ωt ) | (t, x) ∈ V },
is an open subset of T. Using the action ofG on T, the holomorphic limit of polynomial
generators can be regarded as holomorphic functions in Ũ . Now the Gauss–Manin
connection of the enhanced family X/T in the open set Ũ is just (89) replacing B
and Ãi withBz,x and Ãi,z,x , respectively. The existence of the vector fields in Theorem 1
follows from the same computations as in Sect. 3.3. Note that from (76) we get

Rtab = ∂

∂T ab
− 1

2
(La

∂

∂T b
+ Lb

∂

∂T a
) +

1

2
La Lb

∂

∂T
,

Rta = ∂

∂T a
− La

∂

∂T
,

Rt = 1

2

∂

∂T
,

Rka = ∂

∂La
,

Rga
b

= ga
m

∂

∂gb
m

− Lb
∂

∂La
+ 2T ad ∂

∂T db
+ T a ∂

∂T b
,

Rg0 = g0
∂

∂g0
+ La

∂

∂La
+ T a ∂

∂T a
+ 2

∂

∂T

(90)

and Ra’s are given by the vector fields computed in Proposition 1.
We now prove the uniqueness. Let us assume that there are two vector fields R′,R′′

such that AR′ = AR′′ is in one of the special matrix formats in Theorem 1. Let us assume
that R = R′ − R′′ is not zero and so it has a non-zero solution γ (y) which is a regular
map from a neighborhood of 0 in C to T and satisfies ∂yγ = R(γ ). We have ∇Rω1 = 0
and so ω1 restricted to the image of γ is a flat section of the Gauss–Manin connection.
Since z → t is a coordinate change, we conclude that z as a function of y is constant,
and so if γ (y) := (X y, {ω1,y, . . . , ω2h+2,y}) ∈ T then X y and ω1,y do not depend on y.
For the case of the special matrix formats in (10) we have also ∇Rωi,y = 0 and so γ (y)

is a constant map. In the case of the special matrix format in (6), in a similar way all
ω1,y, ωh+2,y, ωh+3,y, . . . , ω2h+2,y do not depend on y. For others we argue as follows.
Since X = Xz does not depend on y the differential forms ω2,y, ω3,y, . . . , ωh+1,y are
linear combinations of elements F2H3

dR(X) (which do not depend on y) with coefficients
which depend on y. This implies that the action of ∇R on them is still in F2H3

dR(X).
Using (6) we conclude that they are also independent of y.

Now let us consider the algebraic case, where the universal familyX/T as in the Intro-
duction exists. We further assume that over a local moduli U no Calabi–Yau threefold
Xz, z ∈ U has an isomorphism which acts non-identically on H3

dR(Xz). In this way, the

total space of choices of ωi ’s over U gives us an open subset T̃ of the moduli space T.
The existence of the algebraic vector fieldsR in Theorem 1 is equivalent to the existence
of the same analytic vector fields in some small open subset of T. This is because to find
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such vector fields we have to solve a set of linear equations with coefficients inOT. That
is why our argument in the algebraic context cannot guarantee that the vector fields in
Theorem 1 are holomorphic everywhere in T.

4.4. Proof of Theorem 2. We use the equalities (76) and (74) and conclude that the two
sets of derivations

Rgb
a
,Rtab ,Rka ,Rta ,Rt

and

∂

∂T ab
,

∂

∂T a
,

∂

∂T
,

∂

∂La
,

∂

∂ga
m

are linear combinations of each other. Therefore, if f ∈ OT is in the left hand side
of (17) then its derivation with respect to all variables T ab, T a, T, La, ga

m is zero
and so it depends only on zi ’s and g0. In a similar way we can derive the fact that⋂

g∈Lie(G) ker(Rg) is the set of G invariant functions in T.

4.5. The Lie Algebra G. In this section we describe the computation of Lie bracket
structure of (9) resulting in the Table 11. Let R1,R2 be two vector fields in T and let
Ai := ARi . We have

∇[R1,R2]ω = ([A2,A1] + R1(A2) − R2(A1))ω

In particular, for gi ∈ Lie(G) we get

[Rg1 ,Rg2 ] = [g1, g2]tr.
We have also

[Ri ,R j ] = 0, i = 1, 2, . . . ,h.

because Ri (AR j ) = R j (ARi ) and [ARi ,AR j ] = 0, i, j = 1, . . . ,h. These equalities, in

turn, follow from the fact that Calg
i jk are symmetric in i, j, k. It remains to compute

[Rg,Ri ], i = 1, 2, . . . ,h, g ∈ G.

which is done for each element of the canonical basis of Lie(G).

4.6. Two fundamental equalities of the special geometry. The Gauss–Manin connection
matrix A satisfies the following equalities:

dA = −A ∧ A (91)

0 = A� + �Atr. (92)

The first one follows from the integrability of the Gauss–Manin connection and the
second equality follows after taking the differential of the equality (3). Note that � is
constant and so d� = 0. Note also that the base space of our Gauss–Manin connection
matrix is T. For the mirror quintic this is of dimension 7, and so the integrability is a
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non-trivial statement, whereas the integrability over the classical moduli space of mirror
quintics (which is of dimension one) is a trivial identity. The Lie algebra Lie(G) is
already hidden in (92) and it is consistent with the fact that after composing Rg with A
we get gtr. Assuming the existence ofRi ’s andC

alg
i jk in Theorem 1, the equalities (91) and

(92) composed with the vector fields Ri ,R j imply that Calg
i jk are symmetric in i, j, k and

the equality (7). We want to argue that most of the ingredients of the special geometry
can be derived from (91) and (92). Special geometry, in algebraic terms, aims to find a
h-dimensional sub-locus (Ch, 0) ∼= M ⊂ T such that A restricted to M is of the form

Ã :=
⎛
⎜⎝
0 ω1 0 0
0 0 ω2 0
0 0 0 ω3
0 0 0 0

⎞
⎟⎠ .

where the entries of ωi ’s are differential 1-forms in M . In Sect. 4.2 the union of such
loci is denoted by H. The equality (92) implies that ω3 = ωtr

1 and ω2 = ωtr
2 and the

equality (91) implies that ω1 ∧ ω2 = 0 and all the entries of ωi ’s are closed, and since
M ∼= (Ch, 0), they are exact. Let us write ω1 = dt, ω2 = d P for some matrices t, P
with entries which are regular functions on M and so we have

dt ∧ d P = 0. (93)

Special geometry takes the entries of t as coordinates on M and the equation (93) gives
us the existence of a holomorphic function F on M such that P = [ ∂ F

∂ti ∂t j
]. This is exactly

the prepotential discussed in Sect. 2.2. One can compute the special period matrix P in
(62), starting from the initial data

Ptr =
⎛
⎜⎝
1 ∗ ∗ ∗
0 δc

a ∗ ∗
0 0 δa

c ∗
0 0 0 −1

⎞
⎟⎠ , (94)

and the equality dPtr = ÃPtr, where Ã is the Gauss–Manin connection restricted to M .

5. Mirror Quintic Case

In Refs. [Mov11,Mov12a] it was proven that the universal family X → T exists in the
case of mirror quintic Calabi–Yau threefolds and it is defined over Q. More precisely
we have

S = Spec(Q[t0, t4, 1

(t50 − t4)t4
]),

where for (t0, t4)weassociate thepair (Xt0,t4 , ω1). In the affine coordinates (x1, x2, x3, x4),
that is x0 = 1, Xt0,t4 is given by

Xt0,t4 := { f (x) = 0}/G,

f (x) := −t4 − x51 − x52 − x53 − x54 + 5t0x1x2x3x4,
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and

ω̃1 := dx1 ∧ dx2 ∧ dx3 ∧ dx4
d f

.

We have also

T = Spec(Q[t0, t1, . . . , t6, 1

(t50 − t4)t4t5
]) (95)

Here, for (t0, t1, . . . , t6) we associate the pair (Xt0,t4 , [ω1, ω2, ω3, ω4]), where Xt0,t4 is
as before and ω is given by

⎛
⎜⎝

ω1
ω2
ω3
ω4

⎞
⎟⎠ :=

⎛
⎜⎜⎜⎜⎝

−1 0 0 0
−55t40−t3

t5
−54(t4−t50)

t5
0 0

(55t40+t3)t6−(55t30+t2)t5
54(t4−t50)

54(t50−t4)
t5

t6 t5 0

t1 t2 t3 625(t4 − t50)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

ω̃1
∇ ∂

∂t0
ω̃1

(∇ ∂
∂t0

)(2)ω̃1

(∇ ∂
∂t0

)(3)ω̃1

⎞
⎟⎟⎟⎟⎠

(96)

The above definition is the algebraic counterpart of the equality (65), up to a change of
trivialization. Note that in this context ti ’s are just parameters, whereas the generators
of the special polynomial differential ring are functions in a local patch of the classical
moduli space ofCalabi–Yau threefolds. The relation between these two sets are explained
in Sect. 4.3. The genus one topological string partition function F A

1 is given by

Falg
1 := −5−1 ln(t

25
12
4 (t4 − t50)

−5
12 t

1
2
5 ) (97)

and for g ≥ 2, we have

Falg
g = Qg

(t4 − t0)2g−2t3g−3
5

, (98)

where Qg is a homogeneous polynomial of degree 69(g − 1) with weights

deg(ti ) := 3(i + 1), i = 0, 1, 2, 3, 4, deg(t5) := 11, deg(t6) := 8. (99)

and with rational coefficients, and so Falg
g is of degree 6g − 6. Further, any monomial

ti00 t
i1
1 · · · ti66 in Falg

g satisfies i2 + i3 + i4 + i5 + i6 ≥ 3g − 3. For the q-expansion of ti ’s see
Ref. [Mov12a]. We have

Calg
111 = 58(t4 − t0)2

t35
(100)

and

R1 = − 3750t50 + t0 t3 − 625t4
t5

∂

∂t0
+
390625t60 − 3125t40 t1 − 390625t0 t4 − t1t3

t5

∂

∂t1

+
5859375t70 + 625t50 t1 − 6250t40 t2 − 5859375t20 t4 − 625t1 t4 − 2t2 t3

t5

∂

∂t2

+
9765625t80 + 625t50 t2 − 9375t40 t3 − 9765625t30 t4 − 625t2 t4 − 3t23

t5

∂

∂t3

− 15625t40 t4 + 5t3t4
t5

∂

∂t4
+
625t50 t6 − 9375t40 t5 − 2t3t5 − 625t4 t6

t5

∂

∂t5

− 9375t40 t6 − 3125t30 t5 − 2t2 t5 + 3t3t6
t5

∂

∂t6
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R
g11

= t5
∂

∂t5
+ t6

∂

∂t6
,

Rg0 = t0
∂

∂t0
+ 2t1

∂

∂t1
+ 3t2

∂

∂t2
+ 4t3

∂

∂t3
+ 5t4

∂

∂t4
+ 3t5

∂

∂t5
+ 2t6

∂

∂t6
,

Rk1
= − 5t40 t6 − 5t30 t5 − 1

625 t2 t5 + 1
625 t3t6

t50 − t4

∂

∂t1
+ t6

∂

∂t2
+ t5

∂

∂t3
,

Rt11 = 625t50 − 625t4
t5

∂

∂t6
,

Rt1 = −3125t40 − t3
t5

∂

∂t1
+
625(t50 − t4)

t5

∂

∂t2
,

Rt = ∂

∂t1
. (101)

Using the asymptotic behavior ofFalg
g ’s inRef. [BCOV93], we know that the ambiguities

of Falg
g arise from the coefficients of

Pg(t0, t4)

(t4 − t50)
2g−2

, deg(Pg) = 36(g − 1). (102)

Knowing that we are using the weights (99), we observe that it depends on [ 12(g−1)
5 ]+ 1

coefficients. The monomials in (102) are divided into two groups, those meromorphic
in t4 − t50 and the rest which is

ta0(t4 − t50)
b, a + 5b = 2g − 2, a, b ∈ N0.

The coefficients of the first group can be fixed by the so called gap condition and the
asymptotic behavior of F A

g at the conifold, see for instance Ref. [HKQ09]. One of
the coefficients in the second group can be solved using the asymptotic behavior of
Falg

g at the maximal unipotent monodromy point. In total, we have [ 2g−2
5 ] undetermined

coefficients. It is not clearwhether it is possible to solve themusing only the data attached
to the mirror quintic Calabi–Yau threefold. Using the generating function role that Falg

g ’s
has on the A−model side for counting curves in a generic quintic, one may solve all the
ambiguities given enough knowledge of enumerative invariants, such computations are
usually hard to perform, see for instance Ref. [HKQ09] for a use of boundary data in the
B-model and A−model counting data which determines the ambiguities up to genus 51.

Finally, we discuss the q-expansion of the Falg
g . Recall the special subset H of T

chosen in Definition 3 whose inclusion map we denote by i . Furthermore, recall the
map f : U → H in (88), where U ⊂ M is a neighborhood of the point of maximal
unipotent monodromy with a local coordinate q such that q = 0 corresponds to the
point of maximal unipotent monodromy. Pulling back functions g ∈ OT by i ◦ f yields
functions g(q) on U . A formal q–expansion of the coordinate functions ti ∈ OT can be
obtained using the vector field R1 in the following way. We write each ti as a formal
power series in q, ti = ∑∞

n=0 ti,nqn , and make the ansatz that the pull-back vector field
(i ◦ f )∗R1 to U is 5q ∂

∂q . We see that this ansatz determines uniquely all the coefficients
ti,n with the initial values:

t0,0 = 1

5
, t0,1 = 24, t4,0 = 0 (103)

and assuming that t5,0 �= 0, see [Mov12a] for few coefficients of ti ’s. Substituting these
q-expansions inFalg

g yields the q-expansions of theFalg
g pulled back toU , andwe recover
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the generating functions of the genus g Gromov–Witten invariants. For instance, we get
the following product formula for the expression inside ln of Falg

1 :

t
25
12
4 (t4 − t50 )−

5
12 t

1
2
5 = 5− 5

12 q
25
12 (

∞∏
n=1

(1 − qn)
∑

r |n dr )(

∞∏
s=1

(1 − qs)ns )
1
12 (104)

where ns = 2875, 609250, 317206375, · · · (resp. ds = 0, 0, 609250, 3721431625, · · · )
is the virtual number of rational (resp. elliptic) curves of degree s in a generic quintic.

6. Final Remarks

We strongly believe that a mathematical verification of mirror symmetry at higher genus
will involve the construction of the Lie algebra G in the A-model Calabi–Yau variety
X̌ . The genus zero case was established by Givental [Giv96] and Lian et al. [LLY97]
for many cases of Calabi–Yau threefolds and in particular the quintic case, that is, the
period manipulations of the B-model lead to the virtual number of rational curves in
the A-model. The genus one case was proved by Zinger in Ref. [Zin09]. The amount of
computations and technical difficulties from genus zero to genus one case is significantly
large. For higher genus there has been no progress. The period expressions involved in
higher genus, see for instance Ref. [YY04], are usually huge and this is the main reason
why themethods used inRefs. [Giv96,LLY97,Zin09] do not generalize. This urges us for
an alternative description of the generating function of the number of higher genus curves
in the A-model. The original formulation in Ref. [BCOV94] using holomorphic anomaly
equation for genus g topological string partition functions is completely absent in the
mathematical formulation of A-model using quantum differential equations. Motivated
by this, we formulated Theorem 1 and the algebraic holomorphic anomaly equation
(16). Our work opens many other new conjectures in the A-model Calabi–Yau varieties.
The most significant one is the following. Let CA

i jk and FA
g , g ≥ 1 be the generating

function of genus zero and genus g Gromov–Witten invariants of the A-model Calabi–
Yau threefold X̌ , respectively

Conjecture 1. Let X̌ be a Calabi–Yau threefold with h := dim(H2
dR(X)) and let M

be the sub-field of formal power series generated by CA
i jk, exp(F

A
1 ),FA

g , g ≥ 2 and

their derivations under qi
∂

∂qi
, i = 1, 2, . . . ,h. The transcendental degree of M over

C is at most ah := 3h2+7h+4
2 , that is, for any ah + 1 elements x1, x2, . . . , xah+1 of

M there is a polynomial P in ah + 1 variables and with coefficients in C such that
P(x1, x2, . . . , xah+1) = 0.

The number ah is the dimension of the moduli space T in the Introduction. Our mathe-
matical knowledge in enumerative algebraic geometry of Calabi–Yau threefolds is still
far from any solution to the above conjecture.

Our reformulation of the BCOV anomaly equation opens an arithmetic approach
to Topological String partition functions. For many interesting example such as mirror
quintic, T can be realized as an affine scheme over Z[ 1

N ] for some integer N . In this

way we can do mod primes of Falg
g ’s which might give some insight into the arithmetic

of Fourier expansions of Falg
g ’s.
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In the case of mirror quintic we have partial compactifications of T given by t4 = 0,
t4 − t50 = 0 and t5 = 0. The first two correspond to the maximal unipotent and conifold
singularities. The degeneracy locus t5 = 0 corresponds to degeneration of differential
forms and not the mirror quintic itself. Our computations show that the vector fields in
Theorem 1 are holomorphic everywhere except t5. These statements cannot be seen for
the proof of Theorem 1 and one may conjecture that similar statements in general must
be valid. Of course one must first construct the universal family X/T and enlarge it to a
bigger family using similar moduli spaces for limit mixed Hodge structures.
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