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Preface

The guiding principal in this book is to give a detailed and historical exposition of
the theory of holomorphic foliations in the projective space of dimension two. Its ob-
jective is to introduce the reader with a basic knowledge in holomorphic foliations.
Our approach is purely algebraic and we avoid many transcendental arguments in
the literature. For our purpose we take foliations in the two domensional plane and
given by polynomial vector fields. We would like to rise the need for working with
arbitrary fields instead of the field of complex numbers. This makes our text different
from the available texts in the literature such as Camacho-Sad’s monograph [CS87]
which emphasizes local aspects, Brunella’s monograph [Bru00] which emphasizes
the classification of holomorphic foliations similar to classification of two dimen-
sional surfaces, Lins Neto-Scárdua’s book [LNS] and Ilyashenko-Yakovenko’s book
[IY08] which both emphasize analytic and holomorphic aspects. We have in mind
an audience with a basic knowledge of Complex Analysis in one variable and Al-
gebraic Geometry of curves in the two dimensional projective space. The text is
mainly written for two primary target audiences: undergraduate students who want
to have a flavor of an important class of holomorphic foliations and algebraic ge-
ometers who want to learn how the theory of holomorphic foliations can be written
in the framework of Algebraic Geometry.

Hossein Movasati
January 2021

Rio de Janeiro, RJ, Brazil
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Chapter 1
Hilbert’s sixteen problem

In this chapter we introduce limit cycles of polynomial differential equations in
R2 and state the well-known Hilbert 16-th problem. Despite the fact that this is
not the main problem of the present text, it must be considered the most important
unsolved problem on polynomial differential equations. Our aim is not to collect all
the developments and theorems in direction of Hilbert 16-th problem (for this see for
instance [Ily02]), but to present a way of breaking the problem in many pieces and
observing the fact that even such partial problems are extremely difficult to treat.
Our point of view is algebraic and we want to point out that both real and complex
Algebraic Geometry would be indispensable for a systematic approach to Hilbert
16-th problem.

1.1 Real foliations

What we want to study is the following ordinary differential equation:{
ẋ = P(x,y)
ẏ = Q(x,y) , (1.1)

where P,Q are two polynomials in x and y with coefficients inR and ẋ = dx
dt , where x

and y are functions depending on the real parameter t which is sometimes called the
time. The differential equation (1.1) is called an autonomous differential equation
as its right hand side is independent of t. We may assume that P and Q do not have
common factors. The solutions of (1.1) are the trajectories of the vector field:

X := P(x,y)
∂

∂x
+Q(x,y)

∂

∂y

We will also write X = (P,Q). The reader may interpret ∂

∂x and ∂

∂y as

1



2 1 Hilbert’s sixteen problem

∂

∂x
:= (1,0),

∂

∂y
:= (0,1).

This is introduced in order to distinguish between points and vectors in R2. Let us
first recall the first basic theorem of ordinary differential equations.

Theorem 1.1 For a ∈ R2 if X(a) 6= 0 then there is a unique analytic function

ϕ : (R,0)→ R2

such that
ϕ(0) = a, ϕ̇ = X(ϕ(t))

Proof. Let us write formally

ϕ =
∞

∑
i=0

ϕit i, ϕi ∈ R2, ϕ0 := a

and substitute it in ϕ̇ = X(ϕ). It turns out that ϕi can be written in a unique way in
terms of of ϕ j, j < i. This guaranties the existence of a unique formal ϕ . Note that if
X(a) = 0 then ϕi = 0 for all i≥ 1 and so ϕ is the constant map ϕ(t) = a. It is not at
all clear why ϕ must be convergent. For this we use Picard operator associated with
the differential equation 1.1 and the contracting map principle. For more details see
[IY08, §1.4, page 4]. Let

P : OU → OU , P( f ) := a+
∫ t

0
X( f (t)).

where U is a small neighborhood of 0 in R, let us say U = (ε,ε) for some positive
small number ε , OU is the set of analytic functions f in a neighborhood of Ū with
f (0) = a. We regard X as a function (R2,a)→ (R2,X(a)), and we can find suitble
a neighborhood of a and a constant C such that |X(b)−X(c)| < C|b− c| for all
b,c ∈ (R2,a), where we have used the usual norm of R2. We have

|P f −Pg|< |
∫ t

0
(X( f (t))−X(g(t)))dt|<C| f −g|ε.

For Cε < 1 this implies that for an arbitrary analytic function f , Pn f is a Cauchy
sequence of functions and hence it converges to an analytic function ϕ which
is the desired function. For instance, if f (t) = a is the constant function then
P f = a + t(P(a),Q(a)) whose image is the line tangent to the solution of X
through a. The entries of the second iteration P2 f are poynomials in t of degree
≤max{deg(P),deg(Q)}+1. ut

Exercise 1.1 Rewrite the proof of Theorem 1.2 in many variables x=(x1,x2, . . . ,xn)
instead of (x,y) and replacing R with C.

Exercise 1.2 In the proof of Theorem 1.1 we have introduced two methods to ap-
proximate a solution of a vector field X . First, by taking a formal power series ϕ and



1.1 Real foliations 3

finding its coefficients by recursion given by X . Second, iterating Picard’s operator
starting from a constant function. Which method converges faster? Justify your an-
swer. For instace, implement both methods in a computer and justify your answer
upon this.

In Theorem 1.1 we even claim that ϕ depends on a analytically, that is, there is a
small neighborhood (R2,a) of a in R2 and an analytic function

Γ : (R2,a)× (R,0)→ (R2,a)

such that Γ (b, ·) for all b ∈ (R2,A) is the solution in Theorem 1.1 crossing the point
b. In this way we may reformulate the following theorem:

Theorem 1.2 For a ∈ R2 if X(a) 6= 0 then there is an analytic isomorphism F :
(R2,0)→ (R2,a) such that the push-forward of ∂

∂x by F is X.

Proof. The push forward of the vector field ∂

∂x by F is X . This is equivalent to(
∂F1
∂x

∂F1
∂y

∂F2
∂x

∂F2
∂y

)(
1
0

)
=

(
P(F1,F2)
Q(F1,F2)

)
where F = (F1,F2). In a similar way as in Theorem 1.1 we have a unique solution
(F1,F2) to the above differential equation with

(F1(0,y),F2(0,y)) = a+(0,y).

We have (
∂F1
∂x (0,0)

∂F1
∂y (0,0)

∂F2
∂x (0,0)

∂F2
∂y (0,0)

)
=

(
P(a) 0
Q(a) 1

)
By a rotation around a, we may assume that P(a) 6= 0, and so F = (F1,F2) :
(R2,0)→ (R2,A) is an analytic isomorphism. ut

Exercise 1.3 Describe the trajectories of the following differential equations:{
ẋ = y
ẏ =−x ,

{
ẋ = x
ẏ =−y ,

{
ẋ = x
ẏ = y

These are respectively called a center, a saddle and a node (or radial) singularity.

Example 1.1 The trajectories of the differential equation{
ẋ = 2y+ x2

2
ẏ = 3x2−3+0.9y

(1.2)

are depicted in Figure (1.1).

The collection of the images of the solutions of (1.1) gives us us an analytic sin-
gular foliation F = F (X)R = F (X) = FR in R2. Therefore, when we are talking
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-2.8 -2.4 -2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8

-2.4

-1.6

-0.8

0.8

1.6

2.4

Fig. 1.1 A limit cycle crossing (x,y)∼ (−1.79,0)

about a foliation we are not interested in the parametrization of its leaves (trajecto-
ries). It is left to the reader to verify that:

Exercise 1.4 For a polynomial R∈R[x,y], a vector field X in R2 and a point a∈R2

with X(a) 6= 0 and R(a) 6= 0, the image of a solutions of X and R ·X passing through
a are the same.

In other words, the foliation associated to X and R ·X in R2\{R = 0} are the same.
For this reason from the beginning we have assumed that P and Q have no common
factors. Being interested only on the foliation F (X), we may write (1.1) in the form

dy
dx

=
P(x,y)
Q(x,y)

,

ω = 0, where ω = Pdy−Qdx ∈Ω
1
R2 .

In the second case we use the notation F =F (ω)R =F (ω). In this case the folia-
tion F is characterized by the fact that ω restricted to the leaves of F is identically
zero. A systematic definition of differential 1-forms will be done in §2.1.

Definition 1.1 The singular set of the foliation F (Pdy−Qdx) is defined in the
following way:

Sing(F ) = Sing(F )R := {(x,y) ∈ R2 | P(x,y) = Q(x,y) = 0}.

By our assumption Sing(F ) is a finite set of points. The leaves of F near a point
A ∈ Sing(F ) may be complicated.

Exercise 1.5 Using a software which draws the trajectories of vector fields, de-
scribe the solutions of (1.2) near its singularities.

By Bezout theorem we have

#Sing(F )≤ deg(P)deg(Q)

The upper bound can be reached, for instance by the differential equation F (Pdy−
Qdx), where P = (x−1)(x−2) · · ·(x−d), Q = (y−1)(y−2) · · ·(y−d′).
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1.2 Poincaré first return map

From topological point of view a leaf L of F = F (ω) is either homeomorphic to
R or to the circle S1 := {(x,y) ∈ R2 | x2 + y2 = 1}. In the second case L is called a
closed solution of F (but not yet a limit cycle).

Exercise 1.6 For a foliation F =F (ω)R the curve {R= 0}, where dω =Rdx∧dy,
intersects all closed leaves of F .

Exercise 1.7 Show that if d(Pdy−Qdx) = 0 then there is a polynomial R ∈ R[x,y]
of degree ≤ deg(P)+1 and deg(Q)+1 such that ω = dH.

We consider a point p ∈ L and a transversal section Σ to F at p. For any point q
in Σ near enough to p, we can follow the leaf of F in the anti-clockwise direction
and since L is closed we will encounter a new point h(q) ∈ Σ . We have obtained an
analytic function

h : Σ → Σ ,

which is called the Poincaré first return map. Later, in the context of holomorphic
foliations we will call it the holonomy map. Usually we take a coordinate system z
in Σ with z(p) = 0 and write the power series of h at 0:

h(z) =
∞

∑
i=1

h(n)(0)
n!

zn

Definition 1.2 h′(0) is called the multiplier of the closed solution L. If the multiplier
is 1 then we say that h is tangent to the identity and we have

h(z) = z+ · · ·+anzn + · · · , an ∈ C, an 6= 0.

for some n ∈ N≥2 which is called the tangency order of h. In order words, the tan-
gency order is n if

h(i)(0) = 0, ∀ 1 < i < n, and h(n)(0) 6= 0.

A closed solution L of F is called a limit cycle if its Poincaré first return map is
not identity. In case the Poincaré first return map is identity then the leaves of F
near L are also closed. In this case we can talk about the continuous family of cycles
δz, z ∈ Σ , where δz is the leaf of F through z.

Exercise 1.8 Prove that the multiplier and order of tangency do not depend on the
coordinate system z in Σ .

Proposition 1.1 In the above situation, we have

h′(0) = exp(−
∫

δ

dω

ω
).

The proof will be presented in Chapter ??
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1.3 Hilbert 16-th problem

It is natural to ask whether a foliation F (Pdy−Qdx) has a finite number of limit
cycles. This is in fact the first part of Hilbert 16-th problem:

Theorem 1.3 (Ilyashenko [Iy91], Écalle [É92]) Each polynomial foliation F (Pdy−
Qdx) has a finite number of limit cycles.

The above theorem was proved by Yu. Ilyashenko and J. Écalle independently. We
have associated to each foliation F the number N(F ) of limit cycles of F . It is
natural to ask how N(F ) depends on the ingredient polynomial P and Q of F .

Conjecture 1.1 (Hilbert 16’th problem) Fix a natural number n ∈ N. There is
a N(n) ∈ N depending only on n such that each foliation F (Pdx−Qdy) with
deg(P),deg(Q)≤ n has at most N(n) limit cycles.

Of course, it would be of interest to give an explicit description of N(n) and more
strongly determine the nature of

N(n) := max
{

N(F (ω))
∣∣∣ω = Pdy−Qdx, deg(P),deg(Q)≤ n

}
.

One of the objective of the present text is to explain the fact that Hilbert 16’th
problem is a combination of many unsolved difficult problems. We note that even
the case n = 2 is open.

1.4 Algebraic curves invarant by foliations

Let f ∈ R[x,y]. An algebraic curve over R is defined to be

{ f = 0} := {(x,y) ∈ R2 | f (x,y) = 0}.

It can happen that such an algebraic curve is empty, for instance take f = x2+y2+1,
or it is a point, for instance take f = x2 + y2. For a moment assume that { f = 0}
near to a point look like a smooth curve, for instance take f = x2 +y2−1 for which
the curve is a circle of radius 1.

Let F (X), X = P ∂

∂x +Q ∂

∂y be a foliation in R2 as before. We would like to
see when the smooth part of f is a part of trajectories of X (leaves of F (X)). The
gradient vector

∂ f
∂x

∂

∂x
+

∂ f
∂x

∂

∂y

is perpendicular to the curve and so if we have

∂ f
∂x

P+
∂ f
∂y

Q = f ·R. (1.3)
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then { f = 0} in neighborhood of p is a part of a leaf of F . If the equality (1.3)
occurs then we say that the algebraic curve { f = 0} is F -invariant.





Chapter 2
Darboux’s theorem

In this chapter we will state and prove a theorem due to G. Darboux in [Dar78]. It
says that if an algebraic foliation in C2 has an infinite number of algebraic leaves
then it must have a first integral. We will actually work over an algebraically closed
field k of characteristic zero instead of C, and this will force use to use the algebro-
geometric notation A2

k instead of C2. This will also automatically lead the reader to
think about similar problems when the characteristic of the field k is not zero.

2.1 Some algebraic notations

The set of polynomial differential 0-forms, 1-forms and 2-forms are respectively
given by

Ω
0
A2
k

:= k[x,y],

Ω
1
A2
k

:= {Pdy−Qdx | P,Q ∈ k[x,y]} ,

Ω
2
A2
k

:= {Pdx∧dy | P ∈ k[x,y]}.

The wedge product is defined in the following way:

(P1dx+Q1dy)∧ (P2dx+Q2dy) := (P1Q2−P2Q1)dx∧dy.

It follows from the definition that for all ω1,ω2 ∈ Ω 1
A2
k

we have ω1 ∧ω1 = 0 and

ω1∧ω2 =−ω2∧ω1. We have the differential maps:

d0 : Ω
0
A2
k
→Ω

1
A2
k
, d0(P) =

∂P
∂x

dx+
∂P
∂y

dy.

d1 : Ω
1
A2
k
→Ω

2
A2
k
, d1(Pdx+Qdy) = d0P∧dx+d0Q∧dy.

9
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Exercise 2.1 Show that d1 ◦d0 = 0.

From now one we do not write the sub-index of d; being clear in the context which
of d0 or d1 it is.

Exercise 2.2 If dω = 0 for some ω ∈ Ω 1
A2
k

then there is a f ∈ Ω 0
A2
k

such that ω =

d f . Is this true for char(k) 6= 0? Can you classify all ω’s which do not satisfy the
mentioned property.

An easier statement is that if d f = 0 for f ∈ Ω 0
A2
k

then f is a constant, that is,

f ∈ k. This is false if the characteristic of k is not zero. For instance, in a field of
characteristic p we have dxp = pxp−1dx = 0 but xp is not a constant.

Let k = R or C. Let also γ = (x(t),y(t)) : (k,0)→ k2 be an analytic map and
ω = Pdx+Qdy ∈Ω 1

A2
k
. The pull-back of ω by γ is defined to be

γ
∗
ω := (P(x(t),y(t))

∂x(t)
∂ t

+Q(x(t),y(t))
∂y(t)

∂ t
)dt

Exercise 2.3 Show that γ∗ω = 0 is independent of the parametrization t, i.e if a :
(k,0)→ (k,0) is an analytic map and γ∗ω = 0 then (γ ◦a)∗ω = 0.

If γ∗ω = 0 then we say that ω restricted to the image of γ is zero. We denote by

k(x,y) :=
{

P
Q
| P,Q ∈ k[x,y]

}
the field of rational (meromorphic) functions in A2

k. The set of meromorphic differ-
ential i-forms is denoted by Ω i

A2
k
(∗) (instead of k[x,y] we have used k(x,y)).

Exercise 2.4 Show that if for ω1,ω2 ∈Ω 1
A2
k
(∗) we have ω1∧ω2 = 0 then ω2 = Rω1

for some R ∈ k(x,y). Formulated in a different way, show that if for ω1 = Pdy−
Qdx,ω2 ∈Ω 1

A2
k

we have ω1∧ω2 = 0 and P and Q are relatively prime then ω2 =Rω1

for some R ∈ k[x,y]. Is this exercise true for char(k) 6= 0.

Definition 2.1 For Ω ∈ Ω 2
A2
k

and ω ∈ Ω 1
A2
k

we denote by Ω

ω
any meromorphic dif-

ferential 1-form α such that
Ω = ω ∧α.

For instance, if if Ω = Rdx∧dy and ω = Pdx+Qdy then we can choose

α :=
R
P

dy.

It follows from Exercise 12 that the difference of two such α is an element in
k(x,y)ω .
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Exercise 2.5 (Stokes formula) Let δ be a closed anti-clockwise oriented path in
R2 which does not intersect itself. Let also ∆ be the region in R2 which δ encloses.
Then ∫

δ

ω =
∫

∆

dω.

which is called the Stokes formula. Give a proof of this using the classical books in
calculus.

2.2 Invariant algebraic sets

In §1.4 we have seen that if an algebraic curve is tangent to a vector field, this
amounts to a polynomial equation. In this section we take this as definition.

Definition 2.2 We say that a curve { f = 0} given by a polynomial f ∈ k[x,y] is
F (ω)-invariant if

ω ∧d f = f η , for some η ∈Ω
1
A2
k
. (2.1)

The geometric description of the equality (2.1) is as follows. Let us write ω =Pdy−
Qdy and X = P ∂

∂x +Q ∂

∂y as usual. We know that

ω ∧d f = (Pdy−Qdx)∧ (∂ f
∂x

dx+
∂ f
∂y

dy) = (X ·∇ f )dx∧dy = f Rdx∧dy (2.2)

where η = Rdx∧ dy. At a smooth point of f = 0 we have X ·∇ f = 0 and ∇ f is
perpendicular to { f = 0}. These imply that X is tangent to { f = 0} at that point. Let
us take f ∈ k[x,y] which is not necessarily irreducible. We take the decomposition
f = ∏

n
i=1 f ni

i , ni ∈ N into irreducible polynomials fi. We have

ω ∧ d f
f

=
n

∑
i=1

niω ∧
d fi

fi

and so in Definition 4 we do not need to assume that f is irreducible. We may extend
Definition 4 to meromorphic functions, that is, ni ∈ N. Let us define

div( f ) :=
n

∑
i=1

niDi, Di := { fi = 0}.

and assume that Di’s are distict, that is, for distinct i and j, fi is not a multiple of f j
by a constant in k.

Exercise 2.6 For f ∈ k(x,y), { f = 0} is F invariant if and only if all Di’s are F -
invariant.
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2.3 First integral

Definition 2.3 We say that f ∈ k(x,y) is a (rational) first integral of the foliation
F (ω) if

ω ∧d f = 0. (2.3)

If this is the case we say that F (ω) has a first integral. If f ∈ k[x,y], that is, f is a
polynomial then we say that F (ω) is Hamiltonian.

Exercise 2.7 Using Exercise 12, show that if F (ω) has the first integral f then
there is g ∈ k(x,y) such that

ω = gd f .

Let us assume that f = F
G where F,G ∈ k[x,y] have no (non-constant) common

factors. We have
d f =

G.dF−F.dG
G2

and so F (G.dF−F.dG) has the first integral F
G .

Proposition 2.1 If the foliation F (ω) has the first integral f := F
G as above then

all the algebraic curves curves F− cG = 0,c ∈ k are F (ω)-invariant .

Proof. The polynomial F and G have no common facors, and so by Exercise 14 it is
enough to show that F−cG

G = f − c = 0 is F -invarint. This follows from ω ∧d( f −
c) = ω ∧d f = 0. ut

2.4 Darboux’s theorem

Theorem 2.1 (G. Darboux, [Dar78]) If the foliation F has infinite number of in-
variant algebraic curves then F has a rational first integral.

Recall that by definition two algebraic curves { f1 = 0},{ f2 = 0} are the same if
f1 = c · f2 for some c ∈ k.

Proof. The proof is classical and can be found in [LNS] page 92. Let us assume
that F (ω) has infinite number of invariant algebraic curves { fi = 0}, i ∈ N. By
definition ω ∧d fi = fi.ηi, ηi ∈Ω 2

A2
k
. We rewrite this

ω ∧ d fi

fi
= pidx∧dy where pi ∈ k[x,y]

A key observation in the proof is that deg(pi) is independent of the degree of fi. To
see this fact we write

(Pdx+Qdy)∧
(

∂ fi

∂x
dx+

∂ fi

∂y
dy
)
= fi · pidx∧dy
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and so

P
∂ fi

∂x
−Q

∂ fi

∂y
= fi · pi

Let d := max{deg(P),deg(Q)}. Then

deg(pi)+deg( fi) = deg( fi · pi) = deg(P
∂ fi

∂x
−Q

∂ fi

∂y
)6 d +deg( fi)−1

and so deg(pi)6 d−1. The vector space k[x,y]≤n = { f ∈ k[x,y]|deg f ≤ n} is finite
dimensional and in fact

dimk[x,y]≤n =

(
n+2

2

)
We set n = d−1 and define ad to be the dimension of the k-vector space generated
by pi’s. We have

ad ≤
(

d +1
2

)
We choose a basis p1, p2, . . . , pad for such a vector space. The element pad+1 is
linearly dependent with the element of such a basis, that is , there are ri ∈ k, i =
1, . . . ,ad +1 such that

ad+1

∑
i=1

ri · pi = 0

and rad+1 6= 0. In other words

ω ∧
ad+1

∑
i=1

ri.
d fi

fi
=

ad+1

∑
i=1

ri(ω ∧
d fi

fi
) = 0.

Let α =
ad+1
∑

i=1
ri

d fi
fi

which is a closed form, that is, dα = 0. We repeat the same

argument for p1, p2, . . . , pad , pad+2

ad+2

∑
i=1,i6=ad+1

r̃i.pi = 0

for some r̃i ∈ k and r̃ad+2 6= 0 and we get ω ∧β = 0 with β :=
ad+2
∑

i=1,i 6=ad+1
r̃i

d fi
fi

. We

have
ω ∧α = ω ∧β = 0.

From this we conclude that α = f β , ω = gβ for some non-constant functions f ,g∈
k(x,y) (see Exercise 12 ). Since dα = 0 we conclude that d f ∧β = 0 which together
with ω = gβ implies that f is a first integral of F (ω). Note that f is non-constant
because α = f β and in the expression of α and β we have respectively the terms
d fad+1
fad+1

and
d fad+2
fad+2

. ut
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Exercise 2.8 The last step in the proof of Darboux’s theorem must be rewritten in
order to make it algorithmic. Write such an algorithm with the input ω, fi, i =
1,2,3, . . . and the output f .

It is possible to derive refinements of the Darboux’s theorem by analyzing its proof.

Theorem 2.2 If the foliation F (ω), ω = Pdy−Qdx, max(deg(P),deg(Q)) = d
has

(d+1
2

)
+ 2 number of invariant algebraic curves then F has a rational first

integral.

Proof. Same as proof of Theorem 2.1. ut

We observe that we have new examples of foliations appearing in the proof of Dar-
boux’s theorem.

Definition 2.4 A holomorphic foliation F (ω) has a logarithmic first integral if
there are polynomials f1, f2, . . . , fs ∈ k[x,y] and λ1,λ2, . . . ,λs ∈ k such that

ω ∧ (
s

∑
i=1

λi
d fi

fi
) = 0.

For k = R or C, the level surfaces of the multi-valued functions f λ1
1 f λ2

2 · · · f λs
s are

tangent to the foliations F (ω). We call this a logarithmic first integral of F (ω).

Theorem 2.3 If the foliation F (ω), ω = Pdy−Qdx, max(deg(P),deg(Q)) = d
has

(d+1
2

)
+1 number of invariant algebraic curves then F has a logarithmic first

integral.

Proof. Same as proof of Theorem 2.1. ut

Exercise 2.9 Discuss Darboux’s theorem over a field of non-zero characteristic.

2.5 Optimal Darboux’s theorem

Are the lower bounds for the number of algebraic solutions in Theorem 2.2 and
Theorem 2.3 optimal? More presiely, is there a foliation of degree d with

(d+1
2

)
+

1 (resp.
(d+1

2

)
) algebraic solutions and without a rational (resp. logarithmic) first

integral? In this section we would like to discuss this issue.
Theorem 2.2 and Theorem 2.3 are valid using the projective degree. For a folia-

tion F (ω), ω = Pdy−Qdx of projective degree d the 1-form seen as mermorphic
form in P2

k has a pole of order d+2 at the line at infinity. If ω ∧ d f
f = pdx∧dy then

we know that dx, dy, d f
f and p have respectively pole order 2, 2, 1 and deg(p) at the

line at infinity. This implies that deg(p) ≤ d− 1. Therefore, we can re state these
theorem using projective degree.
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The previous observation impplies that Theorem 2.3 is not optimal if we use
affine degree. The reason is as follows. Let us take a foliation F (ω) of affine degee
d and with d(d+1)

2 algebraic leaves in A2
k . We consider two cases:

1. The line at infinity is not invariant. In this case F has projective degree d−1
and (d + 1)d/2 ≥ d(d− 1)/2+ 1. Therefore, Theorem 2.3 in the projective case
implies that F is logaritmic.

2. The line at infinity is invariant. We take an affine chart of P1
k such that the

line at infinity is not invariant, and hence, F has (d +1)d/2+1 invariant algebraic
leaves. Theorem 2.3 in the projective case implies that F is logaritmic again.

The conclusion is that the projective degree is more natural when we deal with
an optimal version of Darboux’s theorem.

Proposition 2.2 Consider the foliation

F (ω), ω := xPdy− yQdx, P,Q ∈ k[x,y]≤1. (2.4)

For generic choice of P and Q, the lines x = 0, y = 0 and the line at infinity are
the only invariant algebraic curves of (2.4). In particular, the foliation F (ω) is not
logarithmic.

Proof. The first part of the theorem must be worked out by analysing the separa-
trices of the seven singularities of F (ω). For the second part we take a chart for
P2
k such that the line at infinity is not invariant and we have three invariant lines

li(x,y) = 0, i = 1,2,3. If F (ω) is logarithmic then d(ω

l ) = 0, for some product of
lines li, as F (ω) has no other algebraic leaves except li = 0. This is an algebraic
relation betwenn the cofficients of P and Q.

2.6 Projective spaces

In algebraic geometry many theorems are stated for compact/complete varieties.
A typical example is the Bezout theorem on the number of intersections of two
curves. Curves in A2

k may not intersect each other at all, even if we assume that
k is an algebraically closed field. For instance, take xy− 1 = 0 and x = 0. In this
case there are many intersection points at infinity, and we are going explain what
means infinity in this case. This will lead us into various compactifications such
as the usual projective space P2

k, the product of two lines P1 × P1 and weighted
projective space P1,w1,w2 , w1,w2 ∈ N. Holomorphic foliations are also best viewed
in a compactification of A2

k and it turns out that depending on the foliation F in A2
k

one compactification is better than another one.
The projective space of dimension n as a complex manifold is defined as follows:

Pn = (Cn+1−{0})/∼

where
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a,b ∈ Cn+1−{0}, a∼ b⇔ a = kb, for some k ∈ C−{0}.

For the purpose of the present text, we will mainly use P1 and P2. The projective
space of dimension one P1 is covered by two charts x,x′ biholomorphic to C and the
transition map is given by

x′ =
1
x
.

The projective space of dimension two P2 is covered by three charts (x,y),(u,v),(u′,v′)
biholomorphic to C2 and the transition maps are given by

v =
y
x
, u =

1
x
, v′ =

x
y
, u′ =

1
y
.

Considering the chart (C2,(x,y)), P2 becomes a compactification of C2.

2.7 Projective spaces as schemes

In this section we define the projective space of dimension two P2
k over an arbitrary

field. We also explain the main idea behind the definition P2
k as a scheme. By the

affine schemeA2
k, we simply think of the polynomial ring k[x,y]. Open subsets ofA2

k

are given by the localization of k[x,y]. We will need two open subsets of A2
k given

respectively by

k[x,y,
1
y
] and k[x,y,

1
x
]

By the projective scheme P2
k we mean three copies of A2

k, namely

k[x,y], k[x,z], k[y,z]

together with the isomorphism of affine subsets:

k[x,y,
1
y
]∼= k[x,z,

1
z
], x 7→ x

z
, y 7→ 1

z
(2.5)

k[x,y,
1
x
]∼= k[y,z,

1
z
], x 7→ 1

z
, y 7→ y

z

k[x,z,
1
x
]∼= k[y,z,

1
y
], x 7→ 1

y
, z 7→ z

y

The best way to see these isomorphisms is the following. We look at an element of
k[x,y] as a function on the k-rational points k2 of the first chart and for (a,b) ∈ k2,
we use the identities

[a;b;1] = [
a
b

;1;
1
b
] = [1;

b
a

;
1
a
].
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Let C be a curve in A2
k given by the polynomial f (x,y) ∈ k[x,y]. It induces a curve

C in P2
k in the following way. Let us define f1 := f and

f (
x
z
,

1
z
) = z−d f2(x,z), f (

1
z
,

y
z
) = z−d f3(y,z)

We think of the the curve C in the same way as P2
k, but replacing k[x,y] with

k[x,y]/〈 f1〉 and so on. Here, 〈 f1〉 is the ideal k[x,y] generated by a single element
f1. We can also think of C in the same way as P2

k but with the following additional
relations between variables:

f1(x,y) = 0 in k[x,y]

f2(x,z) = 0 in k[x,z]

and
f3(y,z) = 0 in k[y,z].

The above discussion does not use the fact that k is a field. In fact, we can use an
arbitrary ring R instead of k. In this way, we say that we have an scheme C over the
ring R. The function field of the projective space P2

k is defined to be

k(P2
k) := k(x,y)∼= k(x,z)∼= k(y,z),

where the isomorphisms are given by (2.5). The field of rational functions on the
curve C is the field of fractions of the ring k[x,y]/〈 f1〉. Using the isomorphism (2.5),
this definition does not depend on the chart with (x,y) coordinates. We can also think
of k(C) as k(x,y) but with the relation f1(x,y) = 0 between the variables x,y. Any
f ∈ k(C) induces a map

C(k)→ k

that we denote it by the same letter f .

2.8 Foliations in projective spaces

A foliation F (ω), ω = Pdy−Qdx extends to a holomorphic foliation in P2
k. For

instance, in the chart (u,v) we have

ω = P(
1
u
,

v
u
)d(

v
u
)−Q(

1
u
,

v
u
)d(

1
u
) =

P̃(u,v)dv− Q̃(u,v)du
ud+2 , (2.6)

P̃, Q̃ ∈ k[u,v].

Definition 2.5 The smallest number d in the equality (2.6) is called the (projective)
degree of the foliation F (ω).
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It is also natural to define the (affine) degree of F (ω):

deg(F ) := max{deg(P),deg(Q)}.

These two notions if degree are different. Working with foliations in P2
k it is useful

to use the projective degree.

Proposition 2.3 A foliation of the projective degree d in the affine coordinate A2
k ⊂

P2
k is given by the differential form:

Pdx+Qdy+g(xdy− ydx)

where either g is a non-zero homogeneous polynomial of degree d and deg(P), deg(Q)≤
d or g is zero and max{deg(P),deg(Q)} = d. In the first case the line at infinity is
not invariant by F and in the second case it is invariant by F .

Proof?

Proof. ut

Proposition 2.4 Let k be an algebraically closed field and let F be a foliation in
P2
k of projective degree d. A line in P2

k which does not cross any singularity of F has
d (counted with multiplicity) tangency points with the foliation F . In particular, for
a generic line we have exactly d simple tangency points.

Proof?

Proof. ut

There are foliations in P2
k which are naturally given by meromorphic 1-forms ω ,

see for instance §2.8. In homogeneous coordinates we write

ω = f k1
1 f k2

2 · · · f
k2
s (Pdx+Qdy+Rdz), ki ∈ Z, Px+Qy+Rz = 0

where fi,P,Q,R are homogeneous polynomials in k[x,y,z] and P,Q,R have no non-
constant common factors. We define

Div(ω) :=
s

∑
i=1

kiDi, Di = { fi = 0}.

We use the following in order to determine the degree of F .

Proposition 2.5 Let F (ω) be a foliation in P2
k giveb by the meromorphic form ω

as above. The projective degree of F is ∑
s
i=1 ki deg( fi).

Proof. ut

Remark 2.1 Let F (ω) be a foliation in A2
k given be a meromorphic form ω . We

consider ω as a meromorphic form in P2
k and hence ω might have zeros or poles

along the line at infinity. The affine degree of F is the projective degree of F if the
line at infinity is F -invariant and it is equal to the projective degree of F plus 1 if
the line at infinity is not F -invariant.
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2.9 Jouanolou foliation

The holomorphic foliation defined in A2
k by the 1-form

ω := (yd− xd+1)dy− (1− xdy)dx

is called the Jouanolou foliation of degree d. One usually compactify A2
k inside P2

k.
Consider the group

G := {ε ∈ C | εd2+d+1 = 1}.

It acts on A2
k (and hence in P2

k):

(ε,(x,y))→ (εd+1x,εy) ε ∈ G, (x,y) ∈ A2
k

It has a fixed point p1 = (0,0) at A2
k (and two other fixed points p2 = [0 : 1 : 0], p3 =

[1 : 0 : 0] at infinity). For each ε ∈ G we have ε∗(ω) = εd+1ω and so G leaves the
Jouanolou invariant. We have

Sing(Fd)C = {(ε,ε−d) | ε ∈ G}

(there is no singularity at infinity) and G acts on Sing(Fd) transitively. For pictures of Jouanolou foliation see
[MV09]

2.10 Ricatti foliations

Another natural compactification of A2
k = A1

k×A1
k is P1×P1 which is useful for

studying the Riccati foliations is given by:

ω = q(x)dy− (p0(x)+ p1(x)y+ p2(x)y2)dx, p0, p1, p2,q ∈ k[x].

Substituting y = 1
y′ we have

ω =
1

y′2
(−q(x)dy− (p0(x)y2 + p1(x)y+ p2(x))dx)

and so all the projective lines {a∈C | q(a) 6= 0}×P1 are transversal to the foliation.
This will be later used to define the global holonomy of Ricatti foliations.

2.11 Weighted projective space

Let w := (w0,w1, . . . ,wn), where wi are natural numbers. The multiplicative group
C∗ acts on Cn+1−{0} by
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k · x = (kw0x0,kw1x1, · · · ,kwnxn), x ∈ Cn+1−{0}, k ∈ C∗

The weighted projective space Pw is a toplogical space defined by the quotient:

Pw = (Cn+1−{0})/C∗.

For w = (1,1, · · · ,1) this is the usual projective space of dimension n. In general Pw

might have singularities, and hence, it is not necessarily a complex manifold. For
the purpose of the present text, we need P1,w1,w2 , that is, the first weight is 1. We
have an open subset of Pw = P1,w1,w2 given by

A2
k ⊂ Pw, (x,y) 7→ [1 : x : y].

In this way we consider weights deg(x) := w1, deg(y) := w2 and define the
weighted degree of a polynomial with these weights: degw(x

nym) = nw1 + mw2.
For a polynomial P we write its homogeneous decomposition P = P0 + P1 +
· · ·+ Pa, Pa 6= 0, where degw(Pi) = i, and define degw(P) = a . For a foliation
F (ω), ω = Pdy−Qdx we define

degw(F ) := max(degw(ω)).

where we have considered weights for differential forms: degw dx :=w1, degw(dy)=
w2.

We consider the weighted projective space P1,2,d . A foliation F of degree 2d is
given by

ω := (y+R(x))dy+(Q(x)+ yP(x))dx,

degw(R)≤ d, degw(Q)≤ 2d−2, degw(P)≤ d−2.

We can make the change of variable (x,y) 7→ (x,y+R(x)) and arrive at the Liénard
foliation in A2

k:

F (ω), ω := ydy−(P(x)+yQ(x))dx, degw(Q)≤ 2d−2, degw(P)≤ d−2. (2.7)

2.12 Foliations given by closed forms

Let us consider a moromorphic 1-form in A2
k. In an affine coordinate system (x,y)

we can write ω = P(x,y)dy−Q(x,y)
R(x,y) , where P,Q,R ∈ k[x,y]. In this section we want to

classify closed meromorphic 1-forms, that is, those with dω = 0. This will give us
the class of foliations with Liouvillian first integrals. The following proposition in
the complex context has been proved in [LNS, Propostion 2.5.1].

Theorem 2.4 A meromorphic 1-form in A2
k is closed if and only if it can be written

as
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ω =
k

∑
i=1

λi
d fi

fi
+d

(
g

f r1−1
1 f r2−1

2 · · · f rk−1
k

)
, ri ∈ N, λi ∈ k, fi,g ∈ k[x,y]. (2.8)

Proof. Clearly the differential form in (2.8) is closed. Let us prove the other direc-
tion. Let ω be a meromorphic closed 1-form inA2

k. It is enough to prove the theorem
over complex numbers. If ω is defined over k then we take { fi = 0} the irreducible
components of the pole divisor of ω , and so, f ∈ k[x,y]. Moreover, ri is the pole
order of ω along fi = 0 which can be read directly from the expression of ω . We
claim that λi’s and g are also defined over k. If not we take σ ∈ Gal(k̄/k) which do
not fix the expression in the right hand side of (2.8). After acting this on both hand
side of (2.8) and taking the difference with (2.8) we get an equality of the form:

k

∑
i=1

(λi−σ(λi))
d fi

fi
+d

(
g−σ(g)

f r1−1
1 f r2−1

2 · · · f rk−1
k

)
= 0.

Since ri is the pole order of ω along fi = 0, fi does not divide g. All these and the
above equality imply that σ(λi) = λi, σ(g) = g and so these are dfined over k. Now
let us prove the theorem over complex numbers. ut proof?

Exercise 2.10 Rewrite Theorem 2.4 and its proof for a meromorphic differential
1-form in Pn

k and in homogeneous coordinates, see [LNS, Propostion 2.5.1].

Definition 2.6 Let ω be as in (2.8). The following multi-valued function

f λ1
1 f λ2

2 · · · f
λk
k exp

(
g

f r1−1
1 f r2−1

2 · · · f rk−1
k

)
(2.9)

is called the Liouvillian first integral of F (ω).

Definition 2.7 A foliation F in A2
k given by

ω =
k

∑
i=1

λi
d fi

fi
, ri ∈ N, λi ∈ k, fi ∈ k[x,y].

is called a logarithmic foliation.

For the deformation of holomorphic foliations the projective degree is more suit-
able. Let F be a foliation in P2

k given by a closed meromorphic 1-form. Similar to
the affine case we can write

ω =
k

∑
i=1

λi
d fi

fi
+d

(
g

f r1−1
1 f r2−1

2 · · · f rk−1
k

)
, ri ∈ N, λi ∈ k, ∑λi deg( fi) = 0, .

(2.10)
and fi,g’s are homogenenous polynomial in k[x,y,z] and deg(g)= deg( f r1−1

1 f r2−1
2 · · · f rk−1

k .
By Proposition 6 we know that the projective degree of F is ∑

k
i=1 di · si, where

di = deg( fi).
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Proposition 2.6 (Lins Neto, [Net07], Observation 3.3.1, page 104) The foliation
F as above is in the Zariski closure of L (d1,d2, . . . ,dk,∑

k
i=1(s j−1)di).

Proof.

2.13 Foliations and schemes

Most of the experts in holomorphic foliations has avoided to use the machinery of
schemes for foliations. The main reason is that still for holomorphic foliations there
are many open problems related to their dynamics and topology, and so producing
more arithmetic problems and in this way justfying the usage of schemes, does not
seem to accesible, or to be a priority. In this section by a simple example we explain
why the language of schemes can be useful for deling with foliations. Of course, the
content of this section is just a glance into a territory which might produce fruitful
applications in the future.

We assume that k is algebraically closed field of characteristic zero. By definition
A2

k := Spec(k[x,y]) is the set of all prime ideals p of k[x,y]. It has three types of
points.

1. A closed point of A2
k is given by the ideal 〈x− a, t− b〉 for a,b ∈ k, and hence,

the set of closed points is usually identified with k2. A geometer usually think of
A2

k as the set of its closed points.
2. The generic point p is simply given by the zero ideal, and one might identify it

with whole A2
k.

3. For an irreducible polynomial f ∈ k[x,y] we have the prime ideal p ∈ 〈 f 〉 ∈ A2
k.

f ∈ k[x,y].

In A2
k we have a natural topology, see [hor77, page 70], and so we can talk about

neighborhood of points, the ring of germs of regular functions Op and the ring of
formal functions at p.

Ǒp := lim
n→∞

Op

pn .

For a closed point p, this is just the ring of formal power series around p. Let
F (ω), ω = Pdx−Qdy be a foliation in A2

k

Definition 2.8 We say that ω has a first integral near a point p ∈ A2
k if there is

f ∈ Ǒp such that ω ∧d f = 0.

Let us write down this definition in simple words. By definition F (ω) has a first
integral around the generic point if and only if it has polynomial first integral f ∈
k[x,y], that is, ω ∧ d f = 0. For a closed point p, F has a first integral around p =
(a,b) if there is a formal power series f in x−a,x−b and with coefficients in k such
that ω∧d f = 0. The first fundamental theorem in ordinary differential equation says
that if p is not a singularity of F then F has a first integral f around p. Moreover
f is convergent in a small neighborhood of p if k=C. Now assume that p is neither
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a closed nor generic point. Therefore, p = k[x,y] f for an irreducible polynomial
f ∈ k[x,y].

Proposition 2.7 A foliation F (ω) has a first integral around p = 〈 f 〉, f ∈ k[x,y] an
irreducible polynomial, if and only if there are sequence of polynomials fn ∈ k[x,y]
such fn+1− fn = f ngn for some gn ∈ k[x,y] and

ω ∧d fn ∈ f n−1
θn,

for some θn ∈Ω 2
A2
k

and and for large enough n.

Proof. This is just the translation of a first integral around p. Note that

ω ∧· : Op/pn+1→ Op/pn+1dx∧dy.

ut

Proposition 2.8 If F as Proposition 8 has first integral around p = 〈 f 〉 then it has
first integral around any closed point (a,b) with f (a,b) = 0.





Chapter 3
Holomorphic foliations

In Chapter 1 we have considered foliations over the field of real numbers as this
is needed in the announcement of Hilbert’s 16-th problem and in Chapter 2 we
have considerd foliations over a fairely arbitrary field as in the announcement of
Darboux’s theorem we do not need a specific field. In this chapter we work with fo-
liations over the field of complex numbers and call them holomorphic foliations. We
replace C2 with R2 and hence the defining differential form ω of a foliation F (ω)
might have coefficients in C. This is the beginning of the theory of holomorphic
foliations on complex manifolds. We will also introduce the notion of holonomy
which is a natural counterpart of the Poincaré’s first return map introduce in §1.2

3.1 Complexification

Most of the discussion in Chapter 1 is valid replacing R with C. In this way, we
replace the term analytic with holomorphic. In particular,

Theorem 3.1 For a ∈C2 if X(a) 6= 0 then there is a biholomorphism F : (C2,0)→
(C2,a) such that the push-forward of ∂

∂x by F is X.

The images of the complex solutions of the vector field X give us a (singular)
holomorphic foliation F = F (ω)C = FC in C2. The leaves of FC are two dimen-
sional real manifolds embedded in a real four dimensional space C2 ∼= R4. If the
differential 1-form ω is defined over R, that is P,Q ∈R[x,y], we can talk about both
foliations FR = F (ω)R and FC = F (ω)C in R2 and C2 respectovely. Note that
R2 ⊂ C2 and

FR = R2∩FC, (3.1)

that is, the intersection of a leaf of FC with R2 is a union of leaves of FR. Note that
FC may have more singularities which do not lie in the real plane R2. In order to
get some intuition of (3.1) we explain it for a very simple curve, that is, the equation
of a circle. Let

C : x2 + y2 = 1, D : xy−1 = 0.

25
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R
2

A B C

Fig. 3.1 Correct intuition

The curve C(R) is the circle of radius 1 and D(R) is a hyperbola and they are not
isomorphic topological spaces because the first one has one connected component,
whereas the second one has two. However, over complex numbers these two curves
are the same and the isomorphism is given by

C(C)→ D(C), (x,y) 7→ (x+ iy,x− iy),

where i =
√
−1. The curve D(C) is parameterrized in the polar coordinates by

x = re2πiθ , y = r−1e−2πiθ , r ∈ R+, θ ∈ [0,1]. (3.2)

Since the bijection R+→ R+, x 7→ x−1 sends 0 to ∞, both curves C(C) and D(C)
are cylinders with two infinities, let us say −∞ and +∞. A cycle δ travels from −∞

to +∞ and it covers the whole cylinder. We would like to make a correct intuition
of this travel. This is fairly easy in the case of C(C). This cycle is in the real four
dimensional space C2. In a certain time it fully lies in the two dimensional space
R2 ⊂ C2 which is seen as a circle of radius 1 and center 0 ∈ R2. It disappears from
the two dimensional world and continues its travel toward −∞, see Figure 3.1, A.
The case of D(C) is a little bit tricky as the first reasonable intuition turns out to be
false. First of all we have to identify two connected components of the hyperbola
D(R) inside the cylinder D(C). These are just two lines in D(C) coming from −∞

and going to +∞ without touching each other. Our cycle touches each of these lines
at exactly one point and it seems to make the intuition in Figure 3.1, B. However,
a simple check with the parametrization (4.8) gives us the intuition in Figure 3.1,B,
that is, the cycle δ near −∞ is stretched along the y-axis and as it goes to +∞ it
becomes stretched along the x-axis.

3.2 Integrating form and transversal section

In this section we take a regular point a ∈ C2 of a foliation F (ω) in the complex
manifold (C2,a) which is just an small open neighborhood of a inC2. In this context
the ingredient P and Q of ω := Pdy−Qx can be holomorphic functions in (C2,a).
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We denote by OC2,a the ring of holomorphic functions in (C2,a) and hence P,Q ∈
OC2,a. We denote by Lp the leaf of F (ω) through p ∈ (C2,a).

Theorem 3.2 Assume that a is not a singularity of F (ω) (regular point). There are
holomorphic functions f ,g ∈ OC2,a such that

ω = g ·d f

Further, g(a) 6= 0, f (a) = 0 and f is regular at a, that is, the derivation of f at zero
is not zero.

Proof. The proof follows from Theorem 3.1. Since ω(X) = 0 and the push-forward
of ∂

∂x by F is X , the pull-back ω̃ of ω under the map F necessarily satisfies ω̃( ∂

∂x ) =
0 which implies that ω̃ = g̃dy, for some holomorphic function g̃∈OC2,0. Therefore,
ω = g · d f , where g is the push-forward of g̃ and f is the second coordinate of the
inverse of F . ut

Definition 3.1 In Theorem 3.2, we call f a local first integral of F (ω) and call g a
local integrating factor of F (ω).

In Theorem 3.1 we usually need the inverse ζ := F−1 = ( f̃ , f ), f , f̃ ∈ OC2,a of F
and call it a local chart for F around a. Note that by our proof of Theorem 3.2, a
local first integral is a second coordinate of a local chart. We would like to discuss
the issue of different choices of pairs ( f ,g).

Proposition 3.1 In Theorem 3.2 let us consider two pairs ( fi,gi), i = 1,2 such that

ω = g1d f1 = g2d f2.

There is a biholomorphism h : (C,0)→ (C,0) such that

f2 = h◦ f1, g2 =
g1

h′( f1)
. (3.3)

Proof. Since the derivative of fi, i= 1,2 at a is non-zero, we can find a holomorphic
function f̃i ∈ OC2,a such that ζi := (gi, fi), i = 1,2 is a chart of F . The map ζ2 ◦
ζ
−1
1 : (C2,0)→ (C2,0) is a biholomorphism and it sends dy to h̃dy, for some h̃ ∈

OC2,0. Therefore, ζ2◦ζ
−1
1 (x,y) = (ȟ(x,y),h(y)) which can be rewritten as ζ2(x,y) =

(ȟ(ζ1(x,y)),h( f1(x,y))). This implies that f2 = h◦ f1. The second equality in (3.3)
follows from this and g1d f1 = g2d f2. ut

.

Definition 3.2 Let F = F (ω) be a foliation in C2 and let a be a regular point of
F . A transversal section to F at a is

Σa := {q ∈ (C2,a) | f̃ (q) = 0)}
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where f̃ ∈ OC2,a together with a first integral f ∈ OC2,a give us a local chart ζ =

( f̃ , f ) around a. The transversal section Σa has always the coordinate system given
by the image of f .

Proposition 3.2 Let ζ = ( f̃ , f ) : (C2,a)→ (C2,0) be a local chart for F , p,q ∈
(C2,a) be two points in the same leaf and Σp, Σq be two transversal sections to F
at p and q, respectively. There is a unique biholomorphism

h : (Σp, p)→ (Σq,q)

which is characterized by the fact that z ∈ (Σp, p) and h(z) ∈ (Σq,q) are in the same
leaf of F .

The map h is called a local holonomy of F .

3.3 Holonomy

In this section we take a foliation F in C2. Let δ : [0,1]→ L be a path in a leaf L
of the foliation F with initial point p and end point q. Assume that δ has a finite
number of self intersecting points and take two transversal sections Σp and Σq at p
and q, respectively. We cover the image of δ with local charts for F and since [0,1]
is compactt we can do this by a finite number of local charts:

ζi : Ui→ (C2,0), i = 0,1,2,3, . . . ,n.

Further, we can assume that Ui ∩Ui−1 6= /0. We also take a transversal section Σi at
some point pi of the path δ in Ui−1∩Ui. By convention, we set

Σ0 := Σp, Σn+1 := Σq, p0 := p, pn+1 := q.

Using Proposition 11 we get biholomorphisims

hi : (Σi, pi)→ (Σi+1, pi+1), i = 0,1,2, . . . ,n

Σ p

L

δ

k(z)p
p

z

Fig. 3.2 Holonomy
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Definition 3.3 The holonomy map from Σp to Σq is defined to be

h := hh ◦ · · · ◦h1 ◦h0 : (Σp, p)→ (Σq,q).

The following discussion may help to have a better geometric picture of the notion
of holonomy.

There is a neighborhood Uδ of the path δ such that for every t ∈ [0,1] and z ∈Uδ

near δ (t), the lifting path δk(z),z of δ |[0,t] in the leaf Lz is well-defined. Roughly
speaking, the path δk(z),z, in the leaf Lz, connects k(z) ∈ Σp to z in the direction of
the path δ |[0,t]. In Figure 4.7 we have shown that in the self intersecting points of δ ,
depending on the choice of t, we can choose non-homotop δk(z),z’s. These paths are
depicted by dash-dot-dot lines. Let Ũδ be the set of all homotopy classes [δk(z),z] in
an small neighborhood Uδ of δ . The reader can easily verify that Ũδ is a complex
manifold and the natural map τ : Ũδ → Uδ may not be one to one near the self
intersecting points of δ (see Figure 4.7). All functions, for example k(z), that we
define on the set Uδ are multivalued near such points and are one valued in Ũδ .
For simplicity, we will work with Uδ instead of Ũδ . Let q = δ (t1), 0 ≤ t1 ≤ 1, be a
point of δ and Σq be a small transverse section at q to F . For any point z ∈ Σq, the
lifting δk(z),z of δ |[0,t1] defines the holomorphic function k : Σq→ Σp. The function
h = k−1 : Σp→ Σq is the holonomy of F along δ from Σp to Σq.

If δ is a closed path, q = δ (1) and Σp = Σq, we have the holomorphic germ

h = hδ : Σp→ Σp

h is called the holonomy of F along δ in Σp. In general, we get the following group
morphism:

π(L, p)→ Bihol(Σ , p), δ 7→ hδ . (3.4)

Note that the fundamental group π(L, p) is discrete, however, the group of biholo-
morphims of (Σp,0) is not at all discrete. For instance, after choosing a coordinate
system in Σp, we have multiplication by a constant in Σp

3.4 Holonomy II (written by Olivier Thom)

The following proposition explains the dependance of the holonomy on the path δ .
It is an easy consequence of the fact that in a local chart, the holonomy does not
depend of the path, but only of its endpoints.

Proposition 3.3 Suppose F is smooth around an open subset U ⊂ L of a leaf,
and that δ1,δ2 : [0,1]→ U are homotopic with fixed ends inside U. Then for any
transversals Σ0,Σ1 above δ1(0),δ1(1), the holonomies h1,h2 : Σ0→ Σ1 of F along
δ1 and δ2 are equal.
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Thus for any leaf L, any point p0 ∈ L\Sing(F ) and any transversal Σ above p0,
the holonomy induces an anti-representation

ρF : π1(L\Sing(F ), p0)→ Diff(Σ , p0).

If δ is a closed loop based at p, and ϕ is a parametrization ϕ : (C,0)→ (Σ , p0)
of a transversal Σ , we can use this parametrization to express the holonomy as a
diffeomorphism of (C,0):

ϕ
−1 ◦h◦ϕ ∈ Diff(C,0).

If ψ ∈ Diff(C,0), then ϕ ◦ψ is another parametrization of Σ and the holonomy
in this new coordinate writes ψ−1 ◦ (ϕ−1hϕ) ◦ψ . Thus the holonomy written in a
coordinate is not well-defined, but is only defined modulo conjugacy.

There is another way to define the holonomy. Consider again a path δ in a leaf L,
covered by local charts Ui. On each Ui, choose a local first integral fi of F such that
L∩Ui = { fi = 0}. On an intersection Ui−1∩Ui, both functions fi−1 and fi are local
first integrals of F so by Proposition 10, there exists a germ of diffeomorphism
h̃i ∈ Diff(C,0) such that fi = h̃i ◦ fi−1.

Note that the function h̃1
−1 ◦ . . .◦ h̃i

−1 ◦ fi extends f0 to Ui. If δ is closed we can
take Un = U0 and f0 = fn; the construction above then gives another first integral
h̃n
−1 ◦ . . .◦ h̃1

−1 ◦ f0 of F . Denote by

h̃δ = h1 ◦ . . .◦hn.

This diffeomorphism is in fact equal to the holonomy of F along δ in the fol-
lowing sense:

Proposition 3.4 In the context above, let p ∈ L ∩U0, Σ a transversal above p
and ϕ : (C,0) → (Σ , p) the parametrization of Σ satisfying f0 ◦ ϕ = id. Then
h̃δ = ϕ−1hδ ϕ .

Proof. Let y ∈ C and Ly be the leaf of F passing through ϕ(y). On U0 the function
f0 is constant on Ly, equal to y. On U0∩U1, we have f1 = h̃1◦ f0 so that f1(Ly∩U1)=

h̃1(y). It follows that h̃1
−1 ◦ f1 is constant equal to y on Ly. We carry on until Un to

obtain that h̃γ

−1 ◦ f0 takes the value y on this leaf. But the leaf Ly might cross Σ at a
different point after the loop δ , let ϕ(z) be this point.

Thus we get
h̃δ

−1 ◦ f0(ϕ(z)) = y,

but by definiton, ϕ(z) = hδ ◦ϕ(y) and the result follows.
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3.5 A formula for integrating factor

Let F (ω) be a holomorphic foliation in C2 and let p be a regular point of F . There
is a Zariski neighborhood U of p and a regular 1-form α defined in U such that

dω = ω ∧α

For example, if F is given by a 1-form Pdy−Qdx, then we can define α as follows:

α =−
∂P
∂x +

∂Q
∂y

P
dx, or α =

∂P
∂x +

∂Q
∂y

Q
dy, . (3.5)

This is defined in the Zariski open set P 6= 0. For every two such 1-forms α1 and α2,
we have:

dω = ω ∧α1 = ω ∧α2⇒ ω ∧ (α1−α2) = 0.

This implies that for a ratioanl function f ∈ C(x,y) we have α2−α1 = f ω and so

α1 |L= α2 |L for any leaf L of F

Therefore, αi ’s coincide in the leaves of F . Using two choices of α in (3.5), we
know α|L is actually holomorphic in L. We denote it by

dω

ω

If two 1-forms ω and ω ′ induce the same foliation F , then there is a rational func-
tion f = f (x,y) such that ω ′ = f ω and therefore:

dω
′ = d( f ω) = d f ∧ω + f dω = ω

′∧ (−d f
f
+ω1)⇒

α
′ = α− d f

f
(3.6)

Definition 3.4 The integrating factor g and first integral f along the path δ are
defined as follows:

g, f : Uδ → C

g(z) = exp

(∫
δk(z),z

−dω

ω

)
,

f (z) =
∫

δk(z),z

ω

g
.

The following proposition justifies the names.



32 3 Holomorphic foliations

Proposition 3.5 At each point q along the path δ , f and g are local first integral
and integrating factor, that is, ω = gd f in Uδ , f (q) = 0 and the derivative of f at q
is non-zero.

Proof. Let us take a local chart, first integral f̃ and integrating factor g̃ around p.
Since ω = g̃d f̃ , we have− dω

ω
= dg̃

g̃ and so up to multiplication with a constant g= g̃
and f = f̃ . By analytic continuation we have ω = gd f in Uδ . Since f (p) = 0, we
know that f is zero in the laef passing through p and since ω = gd f and ω does not
vanish in Uδ , the derivative of f in any point of Uδ is non-zero. ut

Now assume that the path δ is closed and consider a transversal section Σ to F
at p. We get the holonomy map h : Σ → Σ . In a coordinate system z ∈ (C,0) ∼= Σ

we can write the Taylor series h = h1z+ h2z2 + · · · and compute h1 = h′(0). The
number h′(0) does not depend on the choise of coordinate system z in Σ , and so by
abuse of notation, we also denote it by h′(p). It is sometimes called the multiplier
of F along δ .

Theorem 3.3 (Poincaré formula) Let δ be a closed path in a leaf L of the foliation
F , Σ be a transverse section at p∈ δ to the foliation and h : Σ→Σ be the holonomy
along δ . Then

h′(p) = exp
(∫

δ

dω

ω

)
(3.7)

Proof. This is a direct consequence of Proposition 14. Let us consider f ,g as holo-
morphic functions in a neighborhood of p and f̃ , g̃ be the analytic continuation of
f ,g along δ . All four functions are defined in a neighborhood of p. We choose the
restriction of f on Σ as a coordinaet system. The holonomy written in this coordi-
nate system and viewed as h : (C,0)→ (C,0) satisfies f̃ (z) = h◦ f (z) for all z ∈ Σ .
Therefore, by Proposition 10 we have

exp
(
−
∫

δ

dω

ω

)
= g̃(p) =

g(p)
h′( f (p))

=
1

h′(0)
.

This finishes the proof. ut

The author learned Proposition 14 and Theorem 3.3 in a course in complex dynam-
ical system with S. Shahshahani in Iran.

3.6 Minimal set

For a holomorphic foliation in P2
C one may formulate many problems related to the

accumulation of its leaves. The most simples one which is still open is the following:

Problem 3.1. Is there a foliation F in P2
C with a leaf L which does not accumulate

in the singularities of F .
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For instance the above problem for Jouanolou foliation is proved numerically for
d ≤ 4 and it is still open for general d. Let us suppose that such an F and L exist
and set M := L̄, where the closure is taken in P2. It follows that M is a union of
leaves of F . We may suppose that M does not contain a proper F -invariant subset.
In this case we call M a minimal set.

Proposition 3.6 A foliation in P2 with algebraic leaf has not a minimal set.

For many other useful statement on minimal sets see [CLNS88].





Chapter 4
Singularities of holomorphic foliations (written
by Hossein Movasati and Olivier Thom)

In this chapter we collect some local aspect of holomorphic foliations. We would
like to study

F (ω), ω = P(x,y)dy−Q(x,y)dx, P,Q ∈ O(C2,0).

with P(0)=Q(0)= 0. This study will be important for the algebraic aspects of holo-
morphic foliations. For instance, the fact that many holomorphic foliations do not
have algebraic invariant curves is closely related to the analysis of their singularities.

4.1 Singularities of multiplicity one

The following discussion can be found partially in [CS87] page 40 page 44–48. Let
ω = P(x,y)dy−Q(x,y)dx, with P,Q∈O(C2,0), be a germ of a holomorphic foliation
at 0 ∈ C2. We assume that 0 is a singularity of F (ω), this is, P(0) = Q(0) = 0.
Writing the Taylor series of ω at 0 we get

ω = ωm +ωm+1 + ...

with ωi = Pi(x,y)dy−Qi(x,y)dx such that Pi,Qi are homogeneous polynomials of
degree i. The number m is called the multiplicity of ω at 0 ∈ C2. If m = 1 then we
say that ω1 is the linear part of ω . We will also use the notation F (X), where X is
the vector field X := P ∂

∂x +Q ∂

∂y .
In this section we are mainly interested in the germ of holomorphic foliations

with a non-zero linear part. To each vector field X we can associate the jacobian
matrix J(X ;x,y) in the basis (x,y) given by

J(X ;x,y) =

[
∂P
∂x (0)

∂P
∂y (0)

∂Q
∂x (0)

∂Q
∂y (0)

]
.

35
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We can use Jordan canonical form for a 2×2 matrix with complex coefficients and
get the following result.

Proposition 4.1 Let F (X) be a germ of holomorphic foliation at 0 and let 0 be a
singularity of F (X). Then, up to biholomorphisms h : (C2,0)→ (C2,0), X can be
written in one of the following formats:

1. y ∂

∂x + ...

2. (ax+ y) ∂

∂x +ay ∂

∂y + ... with a 6= 0.

3. ax ∂

∂x +by ∂

∂y + ... with (a,b) 6= (0,0)

Proof. This comes from the fact that a diffeomorphism h ∈ Diff(C2,0) acts on ja-
cobians matrices by conjugation. Indeed, suppose Y = h∗X so that (dh)(Y ) = X ◦h,
we then get

J(h∗X ;x,y) = dh−1J(X ;x,y)dh.

Exercise 4.1 State and prove a similar proposition as Proposition 16 over the field
of real numbers. One have to use the Jordan canonical form of two times two matri-

ces over real numbers. Note that the matrix
(

a −b
b a

)
, a,b∈R, b 6= 0 over complex

numbers has two complex eigenvalues a± ib and it cannot be diagonalized over real
numbers.

Definition 4.1 We say that the foliation F (X) has a simple singularity at the origin
if the jacobian matrix J(X ;x,y) has two distinct eigenvalues a 6= b with a/b /∈Q+∗.

We will see in the chapter about blowing-up that we can reduce the study of
singular foliations to the study of foliations with only simple singularities, so in
this chapter we will mainly focus on these. Note that if X = ax ∂

∂x + by ∂

∂y , the cor-
responding ordinary differential equation and its solution passing through (x0,y0)
are {

ẋ = ax

ẏ = by
⇒

{
x(t) = x0eat

y(t) = y0ebt .

Note also that around a point p ∈ {xy 6= 0}, the foliation F (X) admits the first
integral

f (x,y) = yax−b.

This function is holomorphic on every simply connected subset of {xy 6= 0}; the
other first integrals f 1/a and f−1/b can be extended respectively to simply connected
subsets of {x 6= 0} and {y 6= 0}, but in general no first integral of F (X) extends to
a holomorphic function at the origin.

Exercise 4.2 For a leaf L of F (X), describe the topological closure L̄ of L (Hint:
See [CS87] pages 44-46)

Let us calculate some holonomies. From the above equation we see that the x-
and y-axes are leaves of F (X). We will name them L1 and L2, respectively. Let
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p 6= 0 be in L1, that is p = (x0,0). Let also δ be the circle through p turning around
0 in L1 anti clockwise and Σ = {(x0,y),y ∈ C}. We take a point z = (x0,y) ∈ Σ and
would like to compute the action of the holonomy on z. We can parametrize δ by
δ (s) = (x0e2iπs,0) for s ∈ [0,1]. The analytic continuation of the leaf L of F (X)

passing through z and along δ is of the form δ̃ (s) = (x0e2iπs,ye2iπ b
a s).

For s = 1 we get the holonomy map

h : Σ → Σ

(x0,y) 7→ (x0,ye2iπ b
a )

If we parametrize Σ by y this is simply

(C,0)→ (C,0)

y 7→ e2iπ b
a y

(4.1)

Fig. 4.1 Holonomy around a singularity
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4.2 Examples

Let us collect some examples of singularties of foliations. If the foliation is simple,
we will suppose that its linear part is already in Jordan canonical form:

X = y
∂

∂y
+αx

∂

∂x
+ . . . (4.2)

with α ∈ C. For each type of singular point, the questions are always the same: is
the foliation diffeomorphic to its linear part ? If not, how can we classify the set of
such germs of foliation modulo diffeomorphisms ? Is it true that X has two invariant
curves tangent to the axes ?

4.2.1 Hyperbolic singularities: α /∈ R

A foliations F (X) is said to have an hyperbolic singular point at the origin if the
exponent α in equation (4.2) is not real.

Fig. 4.2 The foliation y ∂

∂y − (1+ εi)x ∂

∂x
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Let X be a linear vector field with an hyperbolic singularity of exponent α . Note
that |e2iπα | 6= 1 so that the holonomy of each axis is either contracting or dilating.
As a consequence, each leaf accumulates both the x-axis and the y-axis.

4.2.2 Saddle singularities: α ∈ R−

The foliation F (X) is said to have a saddle point at the origin if in equation (4.2),
we have α ∈ R−.

Note that although there are no differences between them over C, this class re-
groups both real saddles and real centers.

Fig. 4.3 The real saddle {xy = cst}

The situation is quite different depending on whether α ∈ Q− or not. Indeed, if
X is a linear saddle with exponent α ∈ Q−, then F (X) admits a holomorphic first
integral. In particular the holonomy is periodic and every leaf is closed.

In contrast, if X is a linear saddle but α ∈ R− \Q−, the holonomy of the x-axis
writes h(y) = e2iπα−1

y. So h is an irrational rotation and the adherence of a generic
leaf is a 3-dimensional real manifold contained in {xy 6= 0}.

4.2.3 Node singularities: α ∈ R+

The foliation F (X) is said to have a node at the origin if in equation (4.2), we have
α ∈ R+.
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Fig. 4.4 The real center {x2 + y2 = cst}

Fig. 4.5 The foliation {y/x = cst}

Once again, the situation depends on whether the exponent α is rational or not. If
α = p

q ∈Q
+, then the linear model X has a meromorphic first integral f (x,y) = yp

xq ,
so each leaf is closed and passes through the origin. On the other side, is α ∈R \Q,
the real function g(x,y) = |y|α

|x| is constant on each leaf, and in fact the adherence of a
leaf L of F (X) is exactly L = g−1(g(L)). Since each manifold L passes through the
origin, it follows that L separates the space C2 in two components: C2 \L =U1∪U2
and each Ui is a neighborhood of an axis.
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4.2.4 Saddle-node singularities: α = 0

Note that if X is a vector field with linear part y ∂

∂y , the foliation associated to the
linear part is smooth so we cannot expect X to behave like its linear part.

Fig. 4.6 The saddle-node y ∂

∂y + x2 ∂

∂x

Take as an example the vector field X = y ∂

∂y + x2 ∂

∂x . The foliation F (X) is also

defined by the closed meromorphic 1-form dy
y −

dx
x2 which can be integrated to give

the first integral f (x,y) = ye
1
x .

We see in figure 4.2.4 that F (X) behaves as a saddle for negative x and as a node
for positive x, hence the name ”saddle-node”.

4.3 Separatrices

Let F (X), X := P ∂

∂x + Q ∂

∂y a germ of holomorphic foliation in (C2,0), also de-
scribed by the 1-form ω := P(x,y)dy−Q(x,y)dx and let 0 ∈ C2 be a singularity of
F (ω).

Definition 4.2 For f ∈ O(C2,0) with f (0) = 0, the curve { f = 0} is a separatrix of
F (ω) if ω ∧d f = f .η for some η ∈Ω 2

(C2,0).
For a formal series f ∈ C[[x,y]] with f (0) = 0, the formal curve { f = 0} is a

formal separatrix of F (ω) if ω ∧d f = f .η for some η ∈Ω 2
(C2,0)⊗O

(C2,0)
C[[x,y]].

If { f = 0} admits the local parametrization t 7→ γ(t) (ie. f ◦ γ ≡ 0 and γ 6≡ 0),
then this equation is equivalent to the existence of a function r(t) with
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X ◦ γ(t) = r(t).dγ

(
∂

∂t

)
.

In the global (algebraic) context we say that { f = 0} is F (ω)−invariant .

Proposition 4.2 Let F (X) be a germ of foliation with a singularity of multiplicity
1 at the origin. Suppose J(X ;x,y) has two eigenvalues a,b ∈ C with b/a /∈ Z and
consider an eigenvector v associated to a. Then F has an holomorphic separatrix
tangent to v.

Proof. Suppose that the linear part of X is already diagonal:

X = (ax+ ε1)
∂

∂x
+(by+ ε2)

∂

∂y
,

with a,b ∈ C and ε1,ε2 functions vanishing at order 2. Consider the dilatation λt :
(x,y) ∈ C2 7→ (tx, ty) and the vector field Xt = λ ∗t X :

Xt = (ax+
1
t

ε1(tx, ty))
∂

∂x
+(by+

1
t

ε2(tx, ty))
∂

∂y
.

Remark that the family (Xt) is a holomorphic deformation of the linear part X0 of X .
Consider the loop γ(s) = (re2iπs,0), the curve T = {x = r} and a disk D = D(0,r)⊂
T for r small enough. Note also that the fibration {x = cst} is transverse to X0 above
γ so will be transverse to Xt above γ for t small enough. Thus the holonomy ht of Xt
on T along γ will be well-defined for small t and gives an holomorphic application

ht : D→ T.

By continuity, ht is a deformation of h0(y) = e2iπb/ay. Now, the holomorphic variety
V = {ht(y)−y= 0}⊂Ct×Cy contains the point (0,0) and is smooth and transverse
to {t = 0} at (0,0) since ∂

∂y (ht(y)− y) 6= 0 by hypothesis. Hence the existence of
a unique fixed point yt of ht for every small t, which can also be seen as a fixed
point of the holonomy of X on λt(T ) along λt(γ). The collection of points F :=
{(rt,yt)} ⊂ C2 is thus a closed leaf of F (X) passing through the origin, that is,
a separatrix. Note finally that by construction the tangent of F at the origin is the
tangent of the horizontal separatrix of X0 at the origin.

Remark 4.1 To complete this proposition, let us mention what happens when b/a∈
Z. If b/a ∈ N−∗ or if b = 0, there exists an holomorphic separatrix tangent to v. If
a = 0, there also exists a separatrix tangent to v, but in general it is only formal.
This is the case for the following example given by Euler:

x2 ∂

∂x
+(y− x)

∂

∂y

which has the formal separatrix y = ∑n≥0 n!xn+1.
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Fig. 4.7 Poincaré linearization theorem

The existence of formal separatrices can be proven by writing the equation for
a curve γ(t) to be a separatrix and solving it term by term. The convergence must
then be proven by estimating the coefficients.

If b/a ∈ N+, it might happen that there are no formal separatrix tangent to v, as
for example for

x
∂

∂x
+(2y+ x2)

∂

∂y
.

For a general foliation, we have the following result.

Theorem 4.1 (Camacho-Sad) The germ of any holomorphic foliation F(ω) in
(C2,0) has a separatrix .

This will be proved after introducing the notion of ”blow up” of singularities.

4.4 Poincaré theorem I

Definition 4.3 We say that de foliation F (ax ∂

∂x +by ∂

∂y +...) belongs to the Poincaré
domain if

1. a
b /∈ R−

2. a
b /∈ {2,3,4, ..., 1

2 ,
1
3 ,

1
4 , ...}

Theorem 4.2 Let us assume that the holomorphic foliation F (X), X = ax ∂

∂x +

by ∂

∂y + ... is in the Poincaré domain. Then there exists a biholomorphism h :

(C2,0)→ (C2,0) such that the pull-back of X by h is its linear part ax ∂

∂x +by ∂

∂y

We will give a proof for the special case when the foliation is hyperbolic (ie.
a/b /∈ R); the general case can be shown using a proof similar to that of Dulac’s
theorem thereafter.
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We already know by Proposition 17 that F (X) has two separatrices tangent to the
axes so we can look at the holonomy of the horizontal separatrix: by hyperbolicity
this is a diffeomorphism which is either strictly contracting or strictly dilating. The
following lemma shows that in this case the holonomy is linearizable; we will then
use this fact to construct a diffeomorphism between X and its linear part.

Lemma 4.1 (Poincaré Theorem) Let h : (C,0)→ (C,0) be the germ of a diffeo-
morphism and suppose that |h′(0)| 6= 1. Then there is a unique diffeomorphism
ϕ ∈ Diff(C,0) tangent to the identity such that ϕ ◦h◦ϕ−1(z) = h′(0)z for all z.

Proof. Put λ = h′(0). Even if it means replacing h by h−1, we can suppose |λ |< 1.
Choose a µ ∈ R such that 0 < µ2 < |λ |< µ < 1 and a small disk D⊂ C such that

µ
2|z|< |h(z)|< µ|z| ∀z ∈ D.

In particular, h(D)⊂ D. Let δ ∈ R be such that |h(z)−λ z| ≤ δ |z|2 for z ∈ D. Then

|hn(z)−λ
nz| ≤

n

∑
k=1
|λ |n−k|hk(z)−λhk−1(z)|

≤
n

∑
k=1
|λ |n−k

δ |hk−1(z)|2

≤
n

∑
k=1
|λ |n−k

δ µ
2(k−1)|z|2

≤ δ |λ |n−1|z|2
+∞

∑
k=1

(
µ2

|λ |

)k−1

≤C|λ |n|z|2

where we defined C = δ

|λ |−µ2 . In particular, the application

ϕ : z ∈ D 7→ limn→∞

hn(z)
λ n ∈ C

is well-defined.
Moreover, for each integers n, p,

|h
n+p(z)
λ n+p −

hn(z)
λ n | ≤

1
|λ |n+p |h

p(hn(z))−λ
phn(z)|

≤C
1
|λ |n
|hn(z)|2

≤C
(

µ2

|λ |

)n

|z|2

≤C
(

µ2

|λ |

)n

.
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The sequence (hn/λ n) thus satisfies Cauchy’s uniform criterium and its limit ϕ is
holomorphic on D. Note that ϕ(0) = 0, ϕ ′(0) = 1 and for each z ∈ D,

ϕ ◦h(z) = limn→∞λ
hn+1(z)
λ n+1 = λϕ(z).

Therefore the diffeomorphism ϕ is the one we were seeking.
Suppose ϕ̃ is another such diffeomorphism. Note that ψ := ϕ̃ ◦ ϕ−1 satisfies

ψ(λ z) = λψ(z) for all z. If ψ(z) = z+∑n≥2 anzn, the latter equation gives at order
n the equality anλ nzn = λanzn. Since λ is not a root of unity, the only possibility is
an = 0, so that ϕ̃ = ϕ .

Proof (Proof of Theorem 4.2). By Proposition 17 the foliation F (X) has two sep-
aratrices, and without loss of generality we can suppose that they are the axes Cx
and Cy. Fix a transversal T = {x = x0} to Cx, and h(y) the holonomy of the loop
γ(s) = (e2iπsx0,0)⊂Cx on T . We have already noticed that when F is hyperbolic,
h′(0) 6= 1 so by Lemma 1, there exists ϕ ∈ Diff(C,0) tangent to the identity with
ϕ ◦h = h′(0)ϕ .

Let U be the universal cover of (C2,0)\Cy: it comes equipped with the pullback
of F (X) and the vertical fibration {x = cst}. Since U is simply connected, F has a
first integral f on U equal to ϕ(y) on T . Similarly, the linear part X0 of X has a first
integral f0 on U equal to y on T . Consider the diffeomorphisms

ψ : (x,y) ∈U → (x, f (x,y)) ∈ C2,

ψ0 : (x,y) ∈U → (x, f0(x,y)) ∈ C2

and
Φ = ψ

−1
0 ◦ψ.

Now remark that ψ(e2iπ x,h(y)) = (e2iπ x, f (x,y)) and ψ0(e2iπ x,h′(0)y) = (e2iπ x,y)
by definition of the holonomy. Thus Φ(x0,y) = (x0,ϕ(y)) and

Φ(e2iπ x0,y) = ψ
−1
0 (e2iπ x0, f (x0,h−1(y)))

= ψ
−1
0 (e2iπ x0,ϕ ◦h−1(y))

= (e2iπ x0,h′(0)ϕ ◦h−1(y))

= (e2iπ x0,ϕ(y)).

This proves that the diffeomorphism Φ : U → U descends to a diffeomorphism
Φ : (C2,0) \Cy → (C2,0) \Cy which by construction sends the leaves of X to the
leaves of X0. By construction the diffeomorphism Φ is fibered over x and we can
consider it as a family of diffeomorphisms ϕx of the vertical transversals Tx. The
diffeomorphism ϕx is a conjugation between the holonomies of X and X0 on Tx
computed in the variable y. By unicity, it is the diffeomorphism given by Lemma 1.
We want to prove that ϕx has a limit ϕ0 when x→ 0.
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Since F (X) has two separatrices Cx and Cy, it can be written X = ax(1 +

ε1(x,y)) ∂

∂x + by(1+ ε2(x,y)) ∂

∂y . Introduce the operator λt(x,y) = (tx,y) and Xt =

λ ∗t X = ax(1+ε1(tx,y)) ∂

∂x +by(1+ε2(tx,y)) ∂

∂y . The holonomy hx of F on Tx com-
puted in the variable y is the holonomy of Xt on Tx0 computed in the variable y for
t = x/x0 ; it is clear that hx is a holomorphic family with a limit h0 at x = 0. Notice
that in this context, the majorations in Lemma 1 can be done in family so that the
conjugacies ϕx can be defined on a common disk D and ϕx→ ϕ0 when x→ 0 on D.
Thus Φ can be extended by ϕ0 on Cy and gives the sought diffeomorphism.

Theorem 4.3 (Dulac) let F (X), X = ax ∂

∂x + by ∂

∂y + · · ·) be a holomorphic foli-
ation in (C2,0) with a = kb, k ∈ N and k ≥ 2. Then either X is holomorphically
linearizable, or there is a unique biholomorphic function h : (C2,0)→ (C2,0) tan-
gent to the identity such that the pull-back of X by h is

(ax+ cyn)
∂

∂x
+ (by

∂

∂y
). (4.3)

Proof. The theorem admits generalizations for vector fields in (Cn,0) (see [Arnold]).
For this reason, we adopt the notation (x1,x2) = (x,y) and (a,b) = (λ1,λ2). Let

h = (u1,u2) = (x1 +ξ1(x1,x2),x2 +ξ2(x1,x2)) (4.4)

where ξ1, ξ2 are two formal power series ξ j = ∑
|n|≥2

ξ j,nxn, where n = (n1,n2) is

a multi index, |n| = n1 + n2 and xn = xn1
1 xn2

2 . Write X = (λ1x1 + φ1(x1,x2))
∂

∂x1
+

(λ2x2 + φ2(x1,x2))
∂

∂x2
and L = λ1x1

∂

∂x1
+λ2x2

∂

∂x2
its linear part. Let us try to lin-

earize X formally, that is, find h as before such that

L ·u j = λ ju j +φ j(u1,u2) (4.5)

where L ·u j = du j(L) denotes the derivative of u j in the direction L. This is the same
as to say that the pull-back of X is L. The equalities (4.4) and (4.5) imply that

L · x j +
∂ξ j

∂x1
L · x1 +

∂ξ j

∂x2
L · x2 = λ j(x j +ξ j)+φ j(x1 +ξ1,x2 +ξ2) (4.6)

we have L · x j = λ jx j so

∑
|n|≥2

(λ j−n1λ1−n2λ2)ξ j,nxn =−φ j(x1 +ξ1,x2 +ξ2). (4.7)

By hypothesis, λ1 = kλ2 so we have

λ2−n1λ1−n2λ2 = (1− kn1−n2)λ2 6= 0, and

λ1−n1λ1−n2λ2 = (k(1−n1)−n2)λ2
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which can only be zero for (n1,n2) = (0,k). We can solve the equalities in (4.7)
recursively for each multi-index (n1,n2) except (0,k). The equation for ξ1,(0,k) is
either 0 = 0, in which case we can determine the coefficients of ξ1, ξ2, and they are
unique except for ξ1,(0,k), or this equation is 0 = c for some c ∈ C. In this case we
have already found a polynomial biholomorphism h such that h∗X = N + . . ., where
N = L+ cxk

2
∂

∂x1
. The equation N ·h = X ◦h, consists of two equations

N ·u j = λ ju j +φ j(u1,u2);

the second one is the same as before, and the first one becomes

∑
|n|≥2

(λ1−n1λ1−n2λ2)ξ1,nxn + cxk
2 =−φ1(x1 +ξ1,x2−ξ2).

It follows that we can determine the coefficients of ξ1, ξ2 and they are unique except
for ξ1,(0,k).

Now, let us check that these series are in fact convergent. Given two series
A(x1,x2) and B(x1,x2) with positive coefficients we say that A < B if An < Bn
∀n ∈ N2. We denote by Ĉ(x1,x2) the series C(x1,x2) replacing its coefficients by
their norm and by ˆ̂C(x) the series Ĉ(x1,x2) by taking x1 = x2 = x. We know that Ĉ is
convergent in |x1|< R and |x2|< R if ˆ̂C is convergent for |x|< R. Let us prove now

that ˆ̂
ξ1 +

ˆ̂
ξ2 is convergent. The hypotheses on λ1,λ2 imply that there exists a δ > 0

such that
δ < |λ j−n1λ1−n2λ2|, ∀|n| ≥ 2,n 6= (0,k). (4.8)

From (4.7), if we choose ξ1,(0,k) = 0, we get

δ ξ̂ j < φ̂ j(x1 + ξ̂1,x2 + ξ̂2) (4.9)

⇒ ˆ̂
ξ1 +

ˆ̂
ξ2 < δ

−1[ ˆ̂
φ1(x+

ˆ̂
ξ1 +

ˆ̂
ξ2)+

ˆ̂
φ2(x+

ˆ̂
ξ1 +

ˆ̂
ξ2)] (4.10)

Our problem is reduced to the following one. Let F(x) ∈ O(C,0) be a convergent
series with positive coefficients and assume that its multiplicity at x = 0 is ≥ 2. By
implicit function theorem, there exists a holomorphic function y(x) ∈ O(C,0) such
that

y(x) = F(x+ y(x)), (4.11)

the multiplicity of y at x = 0 is ≥ 2 and y is the unique solution, even as a formal
series. Consider the application z ∈ R[[x]] 7→ F(x+ z) ∈ R[[x]], we see easily that
if z1− z2 cancels at order k ≥ 1 at the origin, then F(x+ z1)−F(x+ z2) cancels
at order k+ 1. It follows that for every z0 ∈ xR[[x]], the sequence zk+1 = F(x+ zk)
converges to the unique solution y of z = F(x+ z) satisfying z(0) = 0. In particular,
y has real positive coefficients. Now, F is increasing so if z(x) is a formal series with

z(x)≤ F(x+ z(x)), (4.12)
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then denoting again zk+1 = F(x+ zk), we get zk(x) ≤ F(x+ zk(x)) for each k, and
so z≤ z1 ≤ . . .≤ y. This proves that z(x) converges.

Exercise 4.3 Use a computer and draw F (X) with X as in (4.3) for a = n = 2,b =
1.

Definition 4.4 A biholomorphism h : (C2,0)→ (C2,0) is tangent to the identity if
h = (x+ζ1(x,y) , y+ζ2(x,y)) where the multiplicity of ζ1,ζ2 at 0 is ≥ 2 .

4.5 Siegel domain

In the Poincaré theorem we have excluded a class of holomorphic foliations and it
is natural to ask whether they are also linearizable. Let us start with the definition of
such a class.

Definition 4.5 The foliation F (X), X = ax ∂

∂x +by ∂

∂y + · · · is in the Siegel domain
if

ab 6= 0,
a
b
∈ R−

We say that F (X) has resonance if a
b ∈ Q

−.

For a holomorphic foliation F (X) in the Siegel domain and without resonance,
we have still the formal power series h conjugating X with its linear part. However,
it can happen that this formal power series is not convergent.

Definition 4.6 We say that F (X) is of type (c,v), c,v > 0 if{
|a−n1a−n2b|
|b−n1a−n2b| >

c
(n1 +n2)

v ∀ n1 , n2 ≥ 0 n1 , n2 ∈ N

Theorem 4.4 (Siegel) If F (X) is of type (c,v) then there exist a local biholomor-
phism h : (C2,0)→ (C2,0) such that the pulled backed of X by h is the linear part
of X, that is, ax ∂

∂x + by ∂

∂y .

Proof. See [Arn80].

It is natural to define the sets:

SD := {(a,b) ∈ C2| ab ∈ R
−}

S̃D := {(a,b) ∈ SD |(a,b)o f type(c,v) f or some(c,v) ,c,v > 0}

Exercise 4.4 Is S̃D dense in SD? Give examples of elements of S̃D and SD\S̃D. See
[CS87] and the references therein.
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4.6 Singularities with resonance

Recall the definition of a germ of holomorphic foliation F (X) with resonance
in Definition (19). In the resonance case note that if we write a

b = − n
m (m,n) =

1 , n,m ∈ N then we have{
a−a(m+1)−bn = 0
b−am−b(n+1) = 0 n+m+1≥ 2

In this case, the coefficients ζ1,(m+1,n),ζ2,(m+1,n) cannot be determined in the recur-
sion given in the proof of Theorem 4.2.

Theorem 4.5 Let F (X) ,X := ax ∂

∂x + by ∂

∂y + ... be a germ of holomorphic fo-
liation in (C2,0) and assume that a

b ∈ Q
− (the resonance case). Then there is a

biholomorphism h := (C2,0)→ (C2,0) such that the pull-back of X by h is of the
format

X̃ := (ax+ xyA(x,y))
∂

∂x
+ (by+ xyB(x,y))

∂

∂y

where A, B ∈ O(C2,0) with A(0) = B(0) = 0.

In the above theorem the foliation F (X) has at least two separatrices because F (X̃)
has two Separatrics {x = 0}and{y = 0}.

Proof. Proceeding as in theorem 4.2 we write X as

u̇ j = λ ju j +φ j(u1,u2) (4.13)

where
u j = x j +ξ j(x1,x2) (4.14)

We need to find ξ j(x1,x2) such that h∗X is of the form ẋ j = λ jx j +ψ j(x1,x2) where
ψ j(x1,x2)∈ (x1 ·x2). Here, (x1 ·x2) denotes the ideal of analytic functions generated
by x1x2. Making the same substitutions we get that

∑
|n|≥2

(n1λ1+n2λ2−λ j)ξ j,nxn+ ∑
|n|≥2

ψ j,nxn = φ j(x1+ξ1,x2+ξ2)−
∂ξ j

∂x1
ψ1−

∂ξ j

∂x2
ψ2

(4.15)
We define

• if xn /∈ (x1 · x2) take ψ j,n = 0
• if xn ∈ (x1 · x2) take ξ j,n = 0

If xn /∈ (x1 · x2) then the coefficient n1λ1 + n2λ2− λ j 6= 0. It follows that we can
calculate ξ1,ξ2 formally. To see that they are convergent we claim that if xn /∈ (x1 ·x2)
then ∃δ > 0 such that |n1λ1 + n2λ2−λ j| > δ . From this the calculation of ξ j,n is
done by

∑
|n|≥2

(n1λ1 +n2λ2−λ j)ξ j,nxn = φ j(x1 +ξ1,x2 +ξ2) mod(x1 · x2)
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and so δ ξ̂ j < φ̂ j(x1 + ξ̂1,x2 + ξ̂2), which imply

δ (
ˆ̂

ξ1 +
ˆ̂

ξ2)< φ̂1(x+
ˆ̂

ξ1 +
ˆ̂

ξ2)+ φ̂2(x+
ˆ̂

ξ1 +
ˆ̂

ξ2)

and so we proceed as in theorem 4.6.



Chapter 5
Camacho-Sad theorem

In this chapter we explain one of the main index theorems is holomorphic foliations,
namely the Camacho-Sad index theorem. This together with Baum-Bott index the-
orem and a a local analysis of holomorphic foliations around singularities, are our
main tools in order to study the non-existence of invariant algebraic curves for holo-
morphic foliations.

5.1 Camacho-Sad index

Let F (ω), ω := Pdy−Qdx,P,Q ∈ O(C2,0) be a germ of holomorphic foliation
in (C2,0) and assume that 0 ∈ C2 is an isolated singularity of F , that is, P(0) =
Q(0) = 0 and P and Q do not have common factors. Let also f ∈O(C2,0) and { f = 0}
is a separatrix of F , that is,

d f ∧ω = f .η where η ∈Ω
2
(C2,0).

Proposition 5.1 There exist holomorphic functions g,h ∈ O(C2,0) and η ∈ Ω 1
(C2,0)

such that h is not divisable by f and

gω = h ·d f + f η .

Proof. Since f = 0 is a separatrix, we have d f ∧ω = f .η and so fx.P+ fy.Q = f S
for some S ∈ O(C2,0). Then

fy.ω = fy(Pdy−Qdx) = ( fy.P)dy− ( f .S− fx.P)dx = Pd f − f (Sdx)

The same statement is true if one replaces O(C2,0) with k[x,y] and ”separatrix” with
”invariant algebraic curve”.
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Fig. 5.1 A singular separatrix

Theorem 5.1 (Puiseux parametrization) Let C = { f (x,y) = 0}, f ∈ O(C2,0) be a
germ of a curve in (C2,0) . There is a holomorphic map γ : (C,0)→ (C2,0) such
that f (γ(t)) = 0 and γ is a bijection between (C,0) and { f (x,y) = 0}.

We will prove this theorem later when we introduce the notion of a blow-up. For
now, we only mention that the above theorem is trivial for smooth curves. If { f = 0}
is smooth at 0 , that is ( ∂ f

∂x (0),
∂ f
∂y (0)) 6= (0,0) then one can find γ using implicit

function theorem. Another example is the singular curve given by f = y2− x3. It
has the parametrization given by γ(t) = (t2, t3). From now on let γ be a path in
C = { f = 0} which is the image of a path in (C,0) turning around 0 anti-clockwise
and under the map γ . Recall the definition of dω

ω
from §3.5.

Definition 5.1 The Camacho-Sad index of (F ,C,0) is

I(F,C,0) :=
−1
2πi

∫
γ

η

h
.

Note that λ = e2iπI(F,c) is the multiplier of the holonomy h of F (ω) along the path
γ .

We can reinterpret Proposition 18 in the following way. There is a meromorphic
1-form Ω in (C2,0) which induces the foliation F and

η̃ := Ω − d f
f

has no poles along f = 0. Actually, this 1-form η̃ is unique restricted to f = 0.
With the notation of Proposition 18 we write gω = h ·d f + f ·η and we have Ω =
g
f h , η̃ = η

h . Note also that if we define ω̃ = f Ω = d f + f η̃ then

dω̃

ω̃
= η̃ , restricted to f = 0.
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This follows from

dω̃

ω̃
=

d(d f + f η̃)

ω̃
=

d( f η̃)

ω̃
=

(d f ∧ η̃)+ f .d(η̃)

ω̃

(1)
=

(d f ∧ η̃)

ω̃
=

(d f + f η̃)∧ η̃

ω̃
= η̃

For (1) we restrict to f = 0. Note that it makes sense to say that the restriction of
f dη̃

ω̃
to { f = 0} is zero, becuase η̃ has no poles along f = 0.

If we take ω = Pdy−Qdx then we have

dω

ω
=−

∂P
∂x +

∂Q
∂y

P
dx =−

∂P
∂x +

∂Q
∂y

Q
dy (5.1)

The second equality is valid when it is restricted to the leaves of F (ω). Note that
the residue of dω

ω
in a separatrix differes from the Camacho-Sad index by an integer.

However, if we take the differential 1-form

ω̂ =
1
P

ω = dy− Q
P

dx (5.2)

then we have we have

dω̂

ω̂
=−

∂

(
Q
P

)
∂y

dx (5.3)

and

Proposition 5.2 If the curve f = 0 is smooth and it is not tangent to the y axis at 0
then the Camacho-Sad index can be computed using dω̂

ω̂
, that is,

I(F,C,0) :=
−1
2πi

∫
γ

dω̂

ω̂
.

Proof. From the hypothesis it follows that fy has not zeros in (C2,0). From an-
other side we have ω̃ = fyω̂ which follows from the explicit construction of η in
Proposition 18. Therefore,

dω̃

ω̃
=−

d fy

fy
+

dω̂

ω̂

and the proof follows.

Exercise 5.1 Let ω = Pdy− yQdx and so y = 0 is a separatrix of F (ω) calculate
I(F,0).

Sometimes we write I(F,C) = I(F,C,0), being clear in the context which singularity
we are dealing with.
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Fig. 5.2 Tangency

5.2 Residue formula

The notion of a residue is purely algebraic and we can avoid integrals in it definition,
see for instance [Tat68] and Serre’s book in this article. Therefore, the Camacho-Sad
index can be defined for foliations in P2

k for arbitrary field k.
The residue formula for smooth curves.

Theorem 5.2 Let C⊂P2
k be a smooth curve and let ω be a meromorphic differential

1-form in C. We have
∑
p∈C

residuep(ω) = 0.

Proof. We prove this for k=C. The curve C over C is naturally a Riemann surface.
By definition residuep(ω) = 1

2πi
∮

p ω . Since dω = o, by the Stokes theorem

∑
pi

∮
pi

ω =
∫ ∫

X\
n⋃

i=1
Di

dω = 0

5.3 Camacho-Sad theorem

Theorem 5.3 Let F be a holomorphic foliation in P2
k and let C be a smooth alge-

braic F -invariant curve of degree d in P2
k , then

∑
p∈Sing(F )∩C

I(F ,C, p) = d2.

Proof. First of all note that can we choose a line P1
k ⊂ P2

k and we can write the
foliation F (ω), ω = P(x,y)dy−Q(x,y)dx, in the coordinates (x,y) of the affine
chart A2

k = P2
k\P1

k such that

1. The smooth algebraic curve C ⊂ P2 intersects P1
k transversely in d points.
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Fig. 5.3 Tangency

2. In the affine chartA2
k , the vertical lines x= c are either transversal or have tangen-

cis of order two with the curve C. In addition, all the tangenct points are regular
points of the foliation F . By the Bezout theorem the number of such tangency
points is d(d−1).

Now consider the differential form (5.2) which induces the foliation F and let η

be the differential 1-form in (5.3) multiplied with −1. The poles of the 1−form
η restricted to C are divided in three groups: 1. Singularities of F in C 2. The
tangency points of the curve with vertical lines 3. The intersections of C with the
line at infinity. We compute the residue of η around all these points and use the
residue formula in Theorem 5.2 and we get the proof.

For a singular point p∈C of F , by definition we have Residue(η , p)= I(F ,C, p).
Therefore, we do not need to compute it. For tangency points, we can locally pa-
rameterized a leaf tangent to a vertical line by L : x = g(y) = t.y2 + · · · . For sim-
plicity we assume that such a tangency point is at (0,0). Since P(x,y)

Q(x,y) =
dx
dy , we have

P(g(y),y)
Q(g(y),y) = g′(y). Therefore,

∂ (Q(g(y),y)
P(g(y),y) )

∂y
=− g′′

(g′)2 .

From this we get

η |L =
∂ (Q(g(y),y)

P(g(y),y) )

∂y
g′(y)dy

= −g′′

g′
dy

This has residue −1 at the tangecy point p and so in total we get −d(d−1).
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Now let us calculate the residue of η for a point p ∈ C in the third group. The
differential form (5.2) has a pole order −1 at infinity. Using the formula (3.6), we
conclude that the residue of dω̂

ω̂
= −η at p is +1 and so in total we get −d for

residues of η for the third group. Finally, by residue formula we have

∑
p

I(F ,C, p)−d(d−1)−d = 0.

Exercise 5.2 Discuss the Camacho-Sad index and theorem for arbitrary field k in-
stead of C.

Exercise 5.3 If we use dω

ω
= −

∂P
∂x +

∂Q
∂y

P dx in the definition of Camacho-Sad index
what would be the corresponding Camacho-Sad theorem. Repeat the same proof as
in Theorem 5.3.



Chapter 6
Baum-Bott index and Theorem

In this chapter we introduce the Baum-Bott index of holomorphic vector fields. The
original articles [?] deals with vector fields in arbitrary dimensions, however, in the
present chapter we focus on dimension two.

6.1 Baum-Bott index

Let F (ω), ω = Pdy−Qdx be a holomorphic foliation in U := (C2,0) with a sin-
gularity at 0 ∈ C2. The differential form dω

ω
that we defined in §4.6 is well-defined

in the leaves of F , however, any realization of it in (C2,0) might be meromorphic.
There is a way to avoid meromorphicity, allowing complex conjugate of holomor-
phic functions (real analytic functions). This is as follows.

We define a C∞ differential (1,0)-form η in U\{0}:

η := (Px +Qy)(
P̄dx+ Q̄dy

|P|2 + |Q|2
) (6.1)

Proposition 6.1 The differential form η satisfies the following properties:

1. η ∧ω = dω .
2. η ∧dη is a closed form, that is, d(η ∧dη) = 0.
3. If ω̂ = Rω and η̂ is defined as in (6.1) using ω̂ then (η̂ ∧ dη̂ −η ∧ dη) is an

exact form.

Proof. The first and second item are easy and are left to the reader. For the third
item we proceed as follows. We have

η̂−η =
dR
R

+ f ω

where f is given by

57
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f :=
RxQ̄−RyP̄

R(|P|2 + |Q|2)
,

and so

η̂ ∧dη̂−η ∧dη = d
(

f η ∧ω +
dR
R
∧η + f

dR
R
∧ω

)
= d

(
dR
R
∧η− f ω ∧ η̂

)
(6.2)

The second and third item in Proposition 20 as above are equivalent to say that η

induces an element in H3
dR(U\{0}) which depends only on the foliation F and not

the differential 1-form ω . where α = f ω

Definition 6.1 The Baum-Bott index of a foliation F defined in (C2,0) is defined
to be

BB(F ,0) := Residue(η ∧dη ,0) =
1

4π2

∫
S

η ∧dη

Here, S= S3(0,r) is the sphere of dimension three, radius r and the center 0 ∈ C2,
for a small positive number r.

It is an easy exercise to show that if ηi, i = 1,2 are two C∞ differential (1,0)-
forms in U\{0} such that they satisfy the item 1 and 2 of Proposition 20 then η2∧
dη2−η1∧dη1 is exact and so in the definition of the Baum-Bott index we can use
any C∞ differential (1,0)-form in U\{0} satisfying item 1 and 2 of Proposition 20.
In particular, this implies that the Baum-Bott index is invariant under coordinates
change. This fact is going to be used in the next proposition.

Proposition 6.2 Let F be a foliation in an open subset U of C2 and let A be an
open sub set of U such that the topological closure of A in C2 is inside U and the
boundary of A is compact and smooth. Further, assume that there is no singularity
of F in the boundary of A. Then

∑
p∈A

⋂
Sing(F )

BB(F, p) =
1

4π2

∫
∂A

η ∧dη

.

Proof. This follows from Stokes’ theorem and the fact that η ∧dη is closed:∫
∂A

η ∧dη−∑

∫
∂Si

η ∧dη =
∫
A

d(η ∧dη) = 0

where S3
i are small spheres around the singularity pi of F in A.

Proposition 6.3 Let X =P ∂

∂x +Q ∂

∂y be a vector field in U =(C2,0) with an isolated
singular point at 0 ∈ C2 and let F = F (X) be the induced foliation. Assume that
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2.png

Fig. 6.1 U

A = DX0 =

(
Px(0) Py(0)
Qx(0) Qy(0)

)
.

has a non-zero determinant. We have

BB(F, p) =
1

4π2

∫
S3

η ∧dη =
trace(A)2

det(A)
,

Proof. An explicit calculation shows that

η ∧dη =
(Px +Qy)

2

|P|2 + |Q|2
(Q̄dP̄− P̄dQ̄)∧dx∧dy

Let D := det(A) and T := trace(A). We consider two cases.
1-X is a linear vector field. By our hypothesis, ϕ(x,y) = (P,Q) = (u,v) is a bi-

homeomorphism (a coordinate change). We have

θ = ϕ
∗(η ∧dη) =

T 2

(|u|2 + |v|2)
(−ūdv̄+ v̄dū)∧ ( 1

D
(du∧dv))

We integrate θ over S3 = (|U |2 + |V |2 = 1) and use the stokes theorem. We have∫
S3

θ =
T 2

D

∫
S3

(ūdv̄− v̄dū)∧du∧dv =
T 2

D

∫
B

2du∧dū∧dv∧dv̄

where B = B(0,1) is the unit ball with the center 0. Since du∧dū∧dv∧dv̄ = 4dV ,
where dV is the Euclidean volume form of C2, we get

BB(F ,0) =
1

4π2

∫
S3

θ =
T 2

D

2-The general case. Let us write P = P1 +R and Q = Q1 + S, where P1,Q1 are
linear and the vanishing order of R and S at 0 is ≥ 2. Consider the function
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Ht : C2→ C2, Ht(p) = t p

For 0 < t ≤ 1 we have S3 ⊆H−1
t (B(0,2)) = B(0, 2

t ) where θt = H∗t (η ∧dη) and so

BB(F,0) =
1

4π t

∫
S3

θt

We have

H∗t (η∧dη)=
(∆ t)2

(|P1 +Rt |2 + |Q1 +St |2)2 [(Q̄1+ S̄t)d(P̄1+R̄t)−(P̄1+R̄t)d(Q̄1+ S̄t)]∧dx∧dy

where ∆ t := T +Rt ◦Ht +Sy ◦Ht and Rt := t−1(S ◦Ht) , St = t−1(S ◦Ht). We take
the limit t → 0 and we see that ∆ t uniformly converges to T and Rt ,St uniformly
converges to zero. Therefore, θt converges uniformely to θ0 which is derived from
the linear part of X . Using the first case we get the result.

Theorem 6.1. (Baum-Bott in P2
C). Let F be a foliation of degree k in P2

C with iso-
lated singularities. Then

∑
p∈Sing(F )

BB(F , p) = (k+2)2 (6.3)

Proof. After taking a proper affine chart E0 = {[1;x;y]|x,y ∈ C} ⊂ P2
C and a multi-

lication of X with a constant, we can assume that Sing(F )⊂ P0, where

P0 := {[1,x,y]| |x|< 1, |y|< 1}.

Let us consider the other affine charts E1 = {[u;1;v]|u,v∈C} and E2 = {[z;w;1]|z,w∈
C} and the corresponding polydisces

P1 = {[u,1,v]| |u|< 1, |v|< 1}, P2 = {[u′,v′,1]| |z|< 1, |w|< 1}.

We notice that
P2
C = P̄0

⋃
P̄1
⋃

P̄2, ∂Pi = ∪
j 6=i

(P̄i∩ P̄j).

Let Xi be a polynomial vector field which induces the foliation F in Ei, i = 0,1,2
and let ωi be the polynomial 1-form such that ωi(Xi) = 0. Let also φi j : Ei→ E j be
the change of coordinates between Ei and Ei. We have

φ
∗
10(ω0) = u−(k+2)

ω1, φ
∗
20(ω0) = (u′)−(k+2)

ω2

In other words in the intersection Ei∩E j we have ωi = fi jω j, where fi j =
1
f ji

and

f01|E0 = xk+2, f02|E0 = yk+2, f12|E0 =
yk+2

xk+2 .

We have fi j f jk fki = 1 which implies that
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d fi j

fi j
+

d f jk

f jk
+

d fki

fki
= 0, ∀i, j,k ∈ {1,2,3}.

Now let us consider η j such that dω j = η j ∧ω j. We have

ηi∧ωi = dωi = d( fi jω j) = d fi jω j + fi jdω j =

(
d fi j

fi j
+η j

)
∧ωi (6.4)

and in a similar way as in the proof of the third part of Proposition 20, there are C∞

functions gi j in Ei∩E j \Sing(F ) such that

ηi = η j +
d fi j

fi j
+gi jωi

Let αi j := gi jωi and so αi j +α jk +αki = 0. Using (6.2) we get

Θi−Θ j = d
(

d fi j

fi j
∧η j +ηi∧αi j

)
(6.5)

where Θi := ηi∧dηi. Using these and the fact that Sing(F )⊂ P0 we have that

4π
2

∑
p∈Sing(F )

BB(F , p) =
∫

∂P0

Θ0 =
∫

∂P0

Θi +
∫

∂P1

Θ1 +
∫

∂P3

Θ3

=
∫

P01

Θ0 +
∫

P02

Θ0 +
∫

P10

Θ1 +
∫

P12

Θ1 +
∫

P20

Θ2 +
∫

P21

Θ2

=
∫

P01

(Θ0−Θ1)+
∫

P12

(Θ1−Θ2)+
∫

P20

(Θ2−Θ0)

=
∫

T
α

where

α =−η1∧
d f01

f01
+η0∧α01−η2∧

d f12

f12
+η1∧α12−η0∧

d f20

f20
+η2∧α20 (6.6)

and Pi j = P̄i ∩ P̄j and T is the two dimensional torus which is the boundary of all
Pi j’s. For the last equality we have used the Stokes’s theorem. We substitute ηi =

η0 +
d fi0
fi0

+αi0 in the expression of α and we have

α =−(η0 +
d f10

f10
+α10)∧

d f01

f01
+η0∧α10− (η0 +

d f20

f20
+α20)∧

d f12

f12
+

(η0 +
d f10

f10
+α10)∧α12−η0∧

d f20

f20
+(η0 +

d f20

f20
+α20)∧α20

=−d f20

f20
∧ d f12

f12
−α01∧

d f01

f01
−α20∧

d f12

f12
+

d f10

f10
∧α12 +

d f20

f20
∧α20
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Now, we just note that

α01∧
d f01

f01
+α20∧

d f12

f12
− d f10

f10
∧α12−

d f20

f20
∧α20

= α20∧
(

d f12

f12
+

d f20

f20

)
+α10∧

d f01

f01
− d f10

f10
∧α12

= α20∧
(
−d f01

f01

)
+α10∧

d f01

f01
− d f10

f10
∧α12

=
d f01

f01
∧ (α01 +α12 +α20) = 0

Hence α = − d f20
f20
∧ d f12

f12
= (k + 2)2 dx

x ∧
dy
y . Using the parametrization (x,y) =

(eiθ ,eiψ) with θ ,ψ ∈ (0,2π) we obtain that

4π
2

∑
p∈Sing(F )

BB(F , p) =
∫

T
α = (k+2)2

∫
T

dx
x
∧ dy

y
= 4π

2(k+2)2

6.2 Applications of Baum-Bott and Camacho-Sad index
theorems

Let F be a foliation of degree k in P2 with finite singularities , let X be a vector field
respect to F and for each singularity Pi of F then DXpi has non zero eigenvalues
a j,b j and a j

b j
6∈Q+ . We say that F ∈ Ak.

Let X be a vector field and define a foliation F and pi is singularity of F such
that DXpi has two non zero eigenvalues such that a j

b j
6∈Q+ then at this point there is

exactly two separatrix .?

Proposition 6.4 Let F be a non degenerate foliation of degree k over P2 then

|Sing(F )|= 1+ k+ k2

this means the number of singularities of F is k2 + k+1 .

Suppose that α j,β j are separatrix of F at p j, let X be a vector field respect to F
and at neighborhood of p j ,DXp j has two eigenvalues a j,b j such that

I(F ,α j) =
b j

a j
and I(F ,β j) =

a j

b j

Definition 6.2 A configuration associated to F is a subset of all separatrix of F

sep(F ) = {a j,b j| j = 1, ...,N}
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Fig. 6.2 separatrix

We say a configuration C is proper if C 6= sep(F )
Given a configuration C  sep(F ) then we use the notation

I(F ,C) = ∑
δ∈C

I(F ,δ ).

Observe that I(F ,C) is a

I(F ,C) = ∑
α j∈C

I(F ,α j)+ ∑
β j∈C

I(F ,β j)

If V = { f = 0} is a F -invariant , we can define a configuration associated to F and
V

C(F ,V ) = {δ ∈ sep(F ) : S⊂V}

Proposition 6.5 Let F ∈ Ak , k ≥ 2 . suppose that I(F ,C) ,for all proper config-
uration C $ sep(F ) is not positive integer then F has not F -invariant (algebraic
solution ).

Proof. Proof by contradiction , let V be F -invariant by the Comacho-Sad in-
dex we have I(F ,V ) = I(F ,C(F,V )) is a positive integer so by the hypothesis
C(F ,S) = sep(F ). let us compute I(F ,sep(F )) use the Baum-Bott theorem on
P2 , according to this theorem we have :

∑
p∈Sing(F )

BB(F , p) =
N

∑
j=1

BB(F , p j) = (k+2)2

since F at each its singularity is non-degenerate then BB(F , p j) =
T 2

j
D j

(by the ex-
ample)

BB(F , p j) =
(a j +b j)

2

a j.b j
=

a j

b j
+

b j

a j
+2 = I(F ,β j)+ I(F ,α j)+2
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then

(k+2)2 =
N
∑
j=1

(I(F ,β j)+ I(F ,α j)+2) = I(F ,sep(F ))+2(k2 + k+1)

I(F ,sep(F )) =−k2 + k+1

If k ≥ 3 then (−k2 + k+ 2 < 0) ,sep(F ) can not be a configuration of a algebraic
curve(F -invariant) . for k = 2 then (−k2 + k + 2 = 2) then so by Comacho-Sad
index sep(F ) can not be a configuration of a algebraic curve .

Proposition 6.6 For k≥ 2 the Jouanulou J(2,k) foliation has not algebraic solution
( J− invariant) curve .

Proof. Suppose that X =(yk−xk+1) ∂

∂x +(1−xky) ∂

∂y and J(2,k)=F (X). For every
singularities p j of F , F at p j is non degenerate (?) and

DX(1,1) =
(
−(k+1) k
−k −1

)
Therefor, the quotients of eigenvalue of DX at p j are the roots of the equation

Z + 1
Z = T 2

D = (k+1)2

N where N = k2 + k+1 then the roots are

z1 =
−k2+2k+2+k(k+2)

√
3i

2N

z2 =
−k2+2k+2−k(k+2)

√
3i

2N

In particular α1,β1 are separattrixes of F at (1,1) , we have I(J(2,k),α1) =
z1,I(J(2,k),β1) = z2 if C a proper configuration then

I(J(2,k),C) = m.z1 +n.z2 = (m+n)(
−k2 +2k+2

2N
)+(m−n)(

k(k+2)
√

3i
2N

)

? where 0 < m+n < 2N, note that I(J(2,k),C) is real , so m=n then I(J(2,k),C) =

(m)(−k2+2k+2
N ) . if k ≥ 3 then I(J(2,k),C) 6∈ R or I(J(2,k),C) ≤ 0, for k = 2

,I(J(2,k),C) 6∈ R or I(J(2,k),C) = 2m
7 can not be positive integer while m < 7.

by the last proposition J(2,k) has not algebraic solution .



Chapter 7
Blow up

Similar to the case of singularities of algebraic varieties, the notion of blow-up is
essential in order to understand how complicated is the singularities of holomorphic
foliations. The final result is a Theorem of Seidenberg which says that after a finite
number of blow-ups any singularity of a holomorphic foliation, we get the so-called
reduced singularities. As in the case of previous chapters, we work in the algebraic
context of foliations in A2

k , however, the whole discussion can be done for germs of
foliations in (C2,0).

7.1 Blow-up of a point

Let us consider the affine variety A2
k with coordinates (x,y). Let also fix a point

p ∈ A2
k. For simplicity we take p = (0,0). The blow-up of A2

k at p is the variety Ã2
k

obtained by glueing

U0 = Spec(k[x, t]), U1 := Spec(k[u,y])

up 1.png

Fig. 7.1 blowing up

65
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via
ut = 1, y = tx.

we have the following well-defined map

ϕ : Ã2
k → A2

k ,

which is obtained by gluing the maps

ϕ0 : U0→ A2
k , (x, t) 7→ (x,xt)

ϕ1 : U1→ A2
k , (u,y) 7→ (uy,y)

We will frequently use Figure 7 to visualize a blow-up.

7.2 Blow-up and foliations

Let consider a foliation F (ω), ω = Pdx+Qdy in A2
k . Let p be an isolated singular

point of F . For simplicity we assume that p = (0,0) ∈ A2
k . We write the homoge-

neous decomposition of ω

ω = ∑
i=k

ωi, ωi = Pi(x,y)dx+Qi(x,y)dy, (Pk,Qk) 6= (0,0)

where Pi,Qi are homogeneous polynomials of degree i and the sum is finite. In the
local context of holomorphic foliations in (C2,0) the above sum can be inifinte.

Definition 7.1 The natural number mp(F ) := k is called the algebraic multiplicity
of F at p.

Let us now analyze the foliation F after a blow-up at p. In the chart U0 with (x, t)
coordinates we have

ϕ
∗
0 ω = ∑

i=k
Pi(x, tx)dx+Qi(x, tx)(xdt + tdx)

= ∑
j=k

x j(Pj(1, t)+ tQ j(1, t))dx+ x j+1Q j(1.t)dt

In a similar way in the chart U1 with the coordinates (u,y) we have

ϕ
∗
1 ω = ∑

i=k
Pi(uy,y)(udy+ ydu)+Qi(uy,y)(dy)

= ∑
j=k

y j+1Pj(u,1)du+ y j(Q j(u,1)+uQ j(u,1))dy

Let
Ci := xPi(x,y)+ yQi(x,y), C :=Ck
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We consider two cases:
1-dicritical case C(x,y) ≡ 0. In this case ϕ∗0 ω and ϕ∗1 ω are divisible by xk+1

and yk+1, respectively. In other words, ϕ∗ω has a zero divisor of order k+1 along
ϕ−1(0). Let us define

ω̂ =
1

xk+1 ϕ
∗
0 ω

ω̌ =
1

yk+1 ϕ
∗
1 ω

We write
ω̂ = [(Pk+1(1, t)+ tQk+1(1, t))dx+Qk(1, t)dt]+ xα

ω̌ = [Pk(u,1)du+(Qk+1(u,1)+uPk+1(u,1)dy]+ yβ
(7.1)

where α and β are 1-forms in A2
k, and so

ω̌ = uk+1
ω̂ (7.2)

Now, we analyze the foliation ϕ∗F near ϕ−1(0). For simplicity, we work in the
chart U0 with (x, t) coordinates. Since Pk(1, t)+ tQk(1, t) = 0, the polynomial Qk
is not identically zero. For points q := (0, t) with Qk(0, t) 6= 0 the leaf of F pass-
ing through q is transversal to x = 0. For a point q = (0, t) with Q(1, t) = 0 and
Ck+1(1, t) 6= 0, we still have a regular point of F , however, the leaf of F through q
is tangent to x = 0. The singularities of F in x = 0 are given by (0, t)’s where t is a
solution of

Qk(1, t) = 0, Ck+1(1, t) = 0

The point (u,y) = (0,0) in the chart U1 must be treated separately. The foliation
F is transversal to ϕ−1(0) at this point if Pk(0,1) 6= 0, that is, the homogeneous
polynomial Pk(x,y) has yk term. In a similar way, F is tangent to ϕ−1(0) at (u,y) =
(0,0) if Pk(0,1) = 0 and Ck+1(0,1) = Qk+1(0,1) 6= 0. If both Pk(0,1) and Ck+1(0,1)
vanish then we have a singularity of F at the point (u,y) = (0,0).

2-Non-dicritical case C(x,y) 6= 0. In this case ϕ∗0 ω and ϕ∗0 ω are divisible by xk

and yk, respectively. We define

ω̂ =
1
xk ϕ

∗
0 ω = [(Pk(1, t)+ tQk(1, t))dx+ xQk(1, t)dt]+ xα

ω̌ =
1
yk ϕ

∗
1 ω = [(Qk(u,1)+uPk(u,1)dy+ yPk(u,1)du]+ yβ

where α are 1-forms. These are related by the equality ω̌ = ukω̂ . In this case the
Projective line ϕ−1(0) is invariant by the foliation F . The singularities of F in
{x = 0} = ϕ−1(0)∩U0 are given by (0, t) with C(1, t) = 0. It has a singularity at
(u,y) = (0,0) in the chart U1 if Qk(0,1) = 0.

Now, we consider some examples.

Example 7.1 Let

ω = (yk +2yx2k−2)dx− x2k−1dy, k ≥ 2.



68 7 Blow up

up 2.png

Fig. 7.2 blowing up

We have m0(F ) = k and C(x,y) = xyk 6= 0. In the chart U0 the foliation ϕ∗F is
given by ω̂ = (tk + txk−1)dx− xkdt, and so, it has a singularity of multiplicity k at
(x, t) = (0,0). In U1 we have

ω̌ = (u+u2k−1yk−1)dy+(yk +2yku2k−2)du

and so ϕ∗F has a singularity of multilicity 1 at (u,y) = (0,0). We do one more
blow-up at (x, t) = 0. For simplicity we redefine (x,y) := (x, t), reuse t,u as before
and redefine

ω = (yk + yxk−1)dx− xkdy

Given y = tx then we have η̂(x, t) = tkdx− xdt , it shows that at x = 0 and t = 0
has algebraic multiplicity 1. Finally , when x = uy , then η̂(u,y) = udy− uk−1ydu
again we found the algebraic multiplicity at u = 0 , y = 0 is 1 .

Example 7.2 Determination of typical leaf ω = d(x3− y2 = 3x2dx− 2ydy = 0) .
The point p=(0,0) is singularity of F (ω) with algebraic multiplicity one(mp(F )=
1). Since C1 = −2y2 6= 0 ,ϕ−1(0) is F -invariant and ω̂ = (3x− 2t2)dx− (2xt)dt
has singularity at (x, t) = (0,0).We redefine (x,y) := (x, t) so will be ω = (3x−
2y2)dx− 2xydy and F = F (ω),it has algebraic multiplicity one at the new point
p=(0,0) ,i.e,mp(F )= 1 and again since c1 = 3x2 6= 0 so ϕ−1(0) is F -invariant and
ω̌ = (3u2−4yu)dy+(3uy−2y2)du, it has singularity at p = (0,0) , so by again we
redefine (x,y) := (u,y) then ω = (3xy+2y)dx+(3x2+4x)dy and given F =F (ω)
it has a singularity at p = (0,0) with mp(F ) = 2. note that C1 = 6x2y−6xy2 6= 0 so
ϕ−1(0) is F -invariant and after the pulled back of ω we have that

ω̂ = (6t−6t2)dx+(3x−4xt)dt
ω̌ = (6u2−6u)dy+(3uy−2y)du
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up 3.png

Fig. 7.3 blowing up

7.3 Multiplicity along an invariant curve

Let F be a foliation in A2
k with an isolated singularity at 0 ∈A2

k . Let us assume that
S := {y = 0} is F -invariant, and hence,

ω = yα(x,y)dx+β (x,y)dy, β (0,0) = 0

The differential 1-form ω evaluated at (x,0) is of β (x,0)dy.

Definition 7.2 The multiplicity of F along S at the singular point p = (0,0) ∈ S is
defined to be the multiplicity of β (x,0) at x = 0. It will be denoted by the mp(F ,S).

Proposition 7.1 mp(F )≤ mp(F ,S)

Proof. This follows immediately form the definitions of mp(F ) and mp(F ,S).

We would like to know how the number mp(F ,S) is bahaves after a blow-up. Recall
the notations of §7.1. We have a transform S′ of S by the blow-up map which is
uniquely determined by the fact that it is irreducible and

ϕ
−1(S) = ϕ

−1(0)+S′

The curve S′ intersects the exceptional divisor ϕ−1(0) in a unique point q. Let F1
be the pull-back of the foliation F by the blow-up map ϕ .

Proposition 7.2 We have

mq(F1,S′) = mp(F ,S)− (mp(F )−1)

Proof. We have
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ω̂ :=
1
xk ϕ

∗
0 ω

=
1
xk [txα(x, tx)dx+β (x, tx)(tdx+ xdt)]

=
1
xk [(txα(x, tx)+ tβ (x, tx))dx+ xβ (x, tx)dt]

where k = mp(F). The proposition folows immediately. Note that in the chart U0, S′

is given by t = 0.

7.4 Sequences of blow-ups

We are going to apply a sequence of blow-ups in a point p = (0,0) ∈A2
k . We fix the

notations as follows. In the (m− 1)-th step we have a surface Mm−1 with a divisor

D(m−1) =
m−1
∪

j=1
P(m−1)

j such that each P(m−1)
j is isomorphic to the projective line P1

k.

We have also a point pm−1 ∈ D(m−1). The variety Mm is obtained by a blow-up at
pm−1. Let ϕm−1 : Mm → Mm−1 be the blow-up map. For the new divisor D(m) we
have

P(m)
m = ϕ

−1
m−1(pm−1),

P(m)
j = ϕ

−1
m−1(P

(m−1)
j ), j = 1,2, . . . ,m−1.

Definition 7.3 We define the weight ρ(P(m)
j ) in the following way. By definition

ρ(P(m)
1 ) = 1, ρ(P(m)

j ) = ρ(P( j)
j )

and
ρ(P( j)

j ) = ∑
i< j
P( j)

i ∩P( j)
j 6= /0

ρ(P( j)
i ).

In other words, the weight of P(m)
m is the sum of the weights of the projective lines

containing pm−1.

Now, let us consider a foliation F in M0 = A2
k . We denote by Fm the pull-back

of F by the the blow-up map ϕ0 ◦ϕ1 ◦ · · ·◦ϕm−1. We will choose the point pm from
the singular set of the foliation Fm.

In the discussion below we will assume that all P(m)
j are Fm-invariant.

Definition 7.4 Let q ∈ P(m)
j
⋂

Sing(Fm). If q is a smooth point of D(m) then we
define

m∗q(Fm,Pm
j ) = mq(Fm,P

(m)
j )
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otherwise
m∗q(Fm,Pm

j ) = mq(Fm,P
(m)
j )−1.

Proposition 7.3 We have

mp(F )+1 = ∑
q∈Sing(Fm)∩D(m)

j=1,...,m

ρ(P(m)
j )m∗q(Fm,P

(m)
j ). (7.3)

Proof. We prove the proposition by induction on m. For m = 1 we have to show that

mp(F )+1 = ∑
q∈P(1)

1 ∩SingF1

mq(F1,P
(1)
1 )

We know that the foliation F1 in U0 is given by

ω̂(x, t) = [(Pk(1, t)+ tQk(1, t))dx+ xQk(1, t)dt]+ xα.

We can assume that Qk(0,1) 6= 0, or equivalently Qk(1, t) is of degree k = mp(F ).
Therefore, all the singularities of F1 are in the U0 chart and so

∑
q∈Sing(F )

mq(F ,P(1)
1 ) = deg(Pk(1, t)+ tQk(1, t)) = mp(F )+1

Now, assume that (7.3) is true for after m blow-ups. We consider two cases:
1. pm ∈ P(m)

k is a regular point of D(m). By definition

ρ(P(m+1)
m+1 ) = ρ(P(m)

k ), m∗pm(Fm,P
(m)
k ) = mpm(Fm,P

(m)
k )

Let {q}= P(m+1)
k

⋂
P(m+1)

m+1 . We have

ρ(P(m)
k )mpm(Fm,P

(m)
k ) = ρ(P(m+1)

k )[mq(Fm+1,P
(m+1)
k )+mpm(Fm)−1]+

ρ(P(m+1)
k )(mq(Fm+1,P

(m+1)
k )−1)+ρ(P(m+1)

m+1 )( ∑

r∈P(m+1)
m+1

r∈Sing(Fm+1)

mr(Fm+1,P
(m+1)
m+1 )) =

ρ(P(m+1)
k )m∗q(Fm+1,P

(m+1)
k )+ρ(P(m+1)

m+1 )(mq(Fm+1,P
(m+1)
m+1 )−1)+

ρ(P(m+1)
m+1 )( ∑

r∈ P(m+1)
m+1

r∈Sing(Fm+1)\{q}

mr(Fm+1,P
(m+1)
m+1 ))

Now, in (7.3) for m we replace ρ(P(m)
k )mpm(Fm,P

(m)
k ) with the sum obtained in the

above equality and we get (7.3) for m+1.
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up 4.png

Fig. 7.4 blowing up

up 5.png

Fig. 7.5 blowing up

2- pm ∈ P(m)
k1
∩P(m)

k2
and so it is not a smooth point of D(m). In this case we will

replace the terms

ρ(P(m)
k1

)m∗pm(Fm,P
(m)
k1

)+ρ(P(m)
k2

)m∗pm(Fm,P
(m)
k2

)

of (7.3) for m with apropriate sums and we will get (7.3) for m+ 1. Let {qi} =
P(m+1)

ki

⋂
P(m+1)

m+1 , i = 1,2. We have
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ρ(P(m)
k1

)m∗pm(Fm,P
(m)
k1

)+ρ(P(m)
k2

)m∗pm(Fm,P
(m)
k2

) =

ρ(P(m+1)
k1

)(m∗q1
(Fm+1,P

(m+1)
k1

)+mpm(Fm)−1)+

ρ(P(m+1)
k2

)(m∗q2
(Fm+1,P

(m+1)
k2

)+mpm(Fm)−1) =

ρ(P(m+1)
k1

)m∗q1
(Fm+1,P

(m+1)
k1

)+ρ(P(m+1)
k2

)m∗q2
(Fm+1,P

(m+1)
k2

)+

ρ(P(m+1)
m+1 )(mpm(Fm)−1).

We have also

mpm(Fm)−1 = ∑
r∈P(m+1)

m+1
r∈Sing(Fm+1)

mr(Fm+1,P
(m+1)
m+1 )−2

= ∑
r∈P(m+1)

m+1
r∈Sing(Fm+1)
r 6=q1,q2

mr(Fm+1,P
(m+1)
m+1 )+mq1(Fm+1,P

(m+1)
m+1 )+mq2(Fm+1,P

(m+1)
m+1 )−2

= ∑
r∈P(m+1)

m+1
r∈Sing(Fm+1)

m∗r (Fm+1,P
(m+1)
m+1 ).

7.5 Milnor number

For a holomorphic foliation F (ω), ω = Pdy−Qdx in A2
k with an isolated singu-

larity at p = 0 we define he Milnor number

µp(F ) := dimk

OA2
k ,p

〈P,Q〉
(7.4)

we also define lp(F ) to be the zero order of ϕ∗(ω) along the exceptional divisor
ϕ−1(0). According to our discussion in §7.3, lp(F ) = mp(F ) if ϕ−1(0) in F1-
invariant and lp(F ) = mp(F )+1 otherwise.

Theorem 7.1 If p is a dicritical singular point of F then

µp(F ) = lp(F )2 + lp(F )−1+ ∑
q∈ϕ−1(p)

µq(F1) (7.5)

and if p is a non-dicritical point of F then



74 7 Blow up

µp(F ) = lp(F )2− lp(F )−1+ ∑
q∈ϕ−1(p)

µq(F1) (7.6)

For a proof see Mattei-Moussu or Soares-Mol

7.6 Seidenberg’s theorem

Let F be a foliation in A2
k.

Definition 7.5 We say that p is a reduced singularity of F (X) if its linear part is
not zero and it is of the form λ1x ∂

∂x +λ2y ∂

∂y , where

1. λ1 6= 0 and λ2 6= 0 and λ1
λ2
6∈Q+ or

2. One of the λi’s is zero and the other is not.

We will use the following proposition in Theorem 11.1.

Proposition 7.4 If a singularity 0 of a foliation in A2
k is reduced and has a mero-

morphic first integral f then f is actually holomorphic at 0.

Proof. If 0 is an indeterminacy point of f then we have a singularity of F̃ with
infinintely many separatrix, and so it is not reduced.

In this section we prove the following.

Theorem 7.2 There is finite sequence of blow-ups such that pull-back foliation has
only reduced singularities.

Proof. We first prove that after a sequence of blow-ups all the singularities of the
pull-back foliation have multiplicity mp equal to 1. We use the fact that if lp (resp.
µp) equals to 1 then mp equals to 1. If lp(F ) = 1 then mp(F ) = 1 and we are
done. Otherwise, we perform a blow-up at p and use (7.5) and (7.6) and we conlude
that µq(F1) < µp(F ). This means that after a finite number of blow-ups we have
singularities with either lp or µp equal to 1.

Now, assume that p is a singularity of F (X) with a non-zero linear part. Using
Proposition 16 we can consider only the following cases:

1. y ∂

∂x + ...

2. (ax+ y) ∂

∂x +ay ∂

∂y + ... with a 6= 0.

3. ax ∂

∂x +by ∂

∂y + ... with (a,b) 6= (0,0)



Chapter 8
Center conditions

One of the most simple singularties of holomorphic foliations in dimension two is
the center singularity. In the real plane it appears as two topologically different sin-
gularity: circles of different radius centered at the origin and families of hyperbola
converging to the union of x and y axes, see Figure 3.1. Despite such a simplic-
ity, its presence for a holomorphic foliation in C2 induces an algebraic set in any
parameter space of holomorphic foliations, and the classification of the irreducible
components of such an algebraic set is still far from being understood. This has
fruitful applications in Hilbert’s 16-th problem and in the literature of planar dif-
ferential equations is known as “Center conditions”. For further discussion of this
topic in the context of holomorphic foliations in surfaces see [Mov04a], and for its
application for codimension one foliations in higher dimensions see [Net07]

8.1 Foliations with a center

Let F be a foliation in C2 given by ω = P(x,y)dy−Q(x,y)dx. The points in
Sing(F ) := {P(x,y) = Q(x,y) = 0} are called the singularities of F . We assume
that P and Q have no common factor and so Sing(F ) is a finite set of points on C2.

Definition 8.1 A singularity p of F is called a center singularity, or center for
simplicity, if

1. The linear part of ω at p has non-zero determinant. In other words, (PxQy −
PyQx)(p) 6= 0.

2. There exists a germ of holomorphic function f ∈O(C2,p) which has non-degenerate
critical point at p ∈ C2 and

ω ∧d f = 0.

that is, the leaves of F near p are given by the level curves of f .
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Exercise 8.1 (Morse Lemma in dimension two) Let f be as in Definition 29. There
is a holomorphic coordinate system (x̃, ỹ) around p with x̃(p) = ỹ(p) = 0 and such
that in this coordinate system, we have f = x̃2 + ỹ2.

A center is also called a Morse singularity. Near the center the leaves of F are
homeomorphic to a cylinder, therefore each leaf has a nontrivial closed cycle. Note
that the two curves x2 + y2 = 1 and xy = 1 are different in the real plane R2 but
isomorphic in the complex plane C2, see Figure 3.1. In Definition 29 we can replace
f with a formal power series.

Theorem 8.1 (Mattei-Moussu, [MM80], Theorem A, page 472) Let F be a foli-
ation in C2, p be a singularity of F with a formal power series first integral, that is,
there is f ∈ ǑC2,p such that ω∧d f = 0. Then there is a formal power series g∈ ǑC,0
in one variable and with g′(0) 6= 0 such that g◦ f is convergent, and hence, F has
a convergent first integral g◦ f .

Proof?
Proof.

Let F (d) be the space of foliations of degree d. For this one can can take any
definition of degree: affine degree, projective degree or weighted degree. This is
a Zariski open subset in some affine space CN and it is defined over Q. We write
t = (tα ,α ∈ I) ∈ CN and tα ’s are coefficients of monomials used in the expressin of
ω . We denote by M (d) the closure of the subset of F (d) containing foliations with
a center. We have learned the statement and proof of the following proposition from
A. Lins Neto in [Net07]. This must go back to Poincaré and Dulac.

Proposition 8.1 M (d) is an algebraic subset of F (d) defined over Q, that is, it is
given by the zero set of polynomials in t and with rational coefficients.

Proof. Let M0(d) be the set of all foliations in M (d) with a center at the origin
(0,0) ∈ C2 and with a local first integral of the type

f = xy+ f3 + f4 + · · ·+ fn + · · · (8.1)

where fi is homogeneous polynomials of degree i and · · · means higher order terms.
Let us prove that M0(d) is an algebraic subset of F (d). Let F (ω) ∈M0(d) and
ω = ω1 +ω2 +ω3 + . . .+ωd+1 be the homogeneous decomposition of ω . We have

ω ∧d f = (ω1 +ω2 +ω3 + · · ·+ωd+1)∧ (d(xy)+d f3 +d f4 + · · ·) = 0.

Putting the homogeneous parts of the above equation equal to zero, we obtain
ω1∧d(xy) = 0⇒ ω1 = k ·d(xy), k is constant,
ω1∧d f3 =−ω2∧d(xy),
. . .
ω1∧d fn =−ω2∧d fn−1−·· ·−ωn−1∧d(xy).
. . .

(8.2)



8.1 Foliations with a center 77

Dividing the 1-form ω by k, we can assume that k = 1. Let C[x,y]n denote the set of
homogeneous polynomials of degree n. Define the operator

Sn : C[x,y]n→ C[x,y]ndx∧dy,

Sn(g) = ω1∧d(g).

We have

Si+ j(xiy j) = d(xy)∧d(xiy j)

= (xdy+ ydx)∧ (xi−1y j−1( jxdy+ iydx))

= ( j− i)xiy jdx∧dy.

This implies that when n is odd Sn is bijective and so in (8.2), fn is uniquely defined
by the terms fm,ωm’s m < n, and when n is even

Image(Sn) = Andx∧dy,

where An is the subspace generated by the monomials xiy j, i 6= j. When n is even
the existence of fn implies that the coefficient of (xy)

n
2 in

−ω2∧d fn−1−·· ·−ωn−1∧d(xy)

which is a polynomial, say Pn, with variables

coefficients of ω2 . . .ωn−1, f2, . . . , fn−1

is zero. The coefficients of fi, i≤ n−1 is recursively given as polynomials in coef-
ficients of ωi, i≤ n−1 and so the algebraic set

M0(d) : P4 = P6 = · · ·= Pn = · · ·= 0 . . .

consists of all foliations F in F (d) which have a formal first integral of the type
(8.1) at (0,0). It follows from Mattei-Moussu theorem, see Theorem 8.1, that F has
a holomorphic first integral of the type (8.1). This implies that M0(d) is algebraic.
Note that by Hilbert nullstellensatz theorem, a finite number of Pi’s defines M0(d).
The set M is obtained by the action of the group of automorphisms ofC2 on M0(d).

Remark 8.1 For n even fn is not unique as we can replace it with fn+a ·(xy)
n
2 , a∈

k. One may put further constrain on fn by assuming that fn does not conatin the
monomial (xy)

n
2 . In this way, fn and hence the formal power series f , is uniquely

dteremined. Is this f convergent?
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8.2 Dulac’s classification

Let F (d) is the space of holomorphic foliation of degree d in P2
k. Let also M (d)

be the closure of the subset of F (d) containing F (ω)’s with at least one center.

Theorem 8.2 (Lins Neto, Cerveaux [CLN96] Theorem E’) Let F be a foliation
of projective degree 2 in P2

k which has a center singularity p. Then there exists a
line L in P2

k which is invariant by F and such that p 6∈ L.

Exercise 8.2 Prove Theorem 8.2 for degree one foliations in P2
k. Put such a line

at infinity and write a degree 1 foliation F (ω) in an affine chart A2
k in the format

ω = (t00 + t10x+ t01y)dy− (s00 + s10x+ s01y)dx. Write down the equation of M (1)
in ti j and si j variables and conclude that it is irreducible.

Theorem 8.3 (H. Dulac, [Dul08], [CLN91]) The algebraic set M (2) has four ir-
reducible components: L (1,1,1,1), L (3,1), L (2,1,1) and an exceptional com-
ponent.

a precise statement and proof

Proposition 8.2 We have

L (2,2)⊂L (1,1,1,1).

Proof. For any family of quadriacs F − tG = 0, t ∈ P1
k, there are exactly three

values of t that it becomes a product of two lines. ut



Chapter 9
Brieskorn and Petrov modules
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Chapter 10
Ilyashenko’s theorem

Let F a(d) be the space of foliations of affine degree d in A2
k and let M a(d) be the

closure of space of foliation of affine degree d and with a center. In this chapter, we
aim to prove the following theorem. Let us write d+1 = d1 +d2 + . . .+ds, di ∈N
and define L a(d1,d2, . . . ,ds) be the space of logarithmic foliations as in Definition
6.

Theorem 10.1 (H. Movasati [Mov04b]) For d ≥ 2 L (d1,d2, . . . ,dk) is a compo-
nent of M (d), where d = d1 +d2 + . . .+ds−1.

For s = 1 we can set λ1 = 1 and L (d) is the space of Hamiltonian foliations in A2
k

and it is the founding stone of the topic of this chapter.

Theorem 10.2 (Yu. Ilyashenko [Ily69],) The space of Hamiltonian foliations F (d f ), f ∈
k[x,y]≤ d +1 is an irreducible component of M a(d).

The variety L a(d1, · · · ,ds) is parameterized by

τ : As
k×Pd1 ×·· ·×Pds →F a(d)

τ(λ1, . . . ,λs, f1, . . . , fs) = f1 · · · fs

s

∑
i=1

d fi

fi
(10.1)

and so it is irreducible. Let J be an equivalence relation in I = {0,1, . . . ,d} with s
equivalence classes, namely J1, . . . ,Js. Let also f = l0l1 . . . ld ∈Q[x,y], where li’ are
lines in A2

k in general position, F0 = F (d f ). In a neighborhood of F0 in F a(d),
L a(d1, · · · ,ds) has many irreducible components (branches) corresponding to the
J’s as follows: The above parameterization near (1, . . . ,1,Πi∈J1 li, . . . ,Πi∈Js li) deter-
mines an irreducible component, namely L a(d1, · · · ,ds)J , of (L (d1, · · · ,ds) ,F0)
corresponding to J. Theorem 10.1 follows from

Theorem 10.3 The local analytic variety L a(d1, · · · ,ds)J is smooth at the point
F (d f ) and the tangent cone of M a(d) at F (d f ) is the union of tangent spaces of
L (d1, · · · ,ds)J where J runs through all equivalence relations as above.
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10.1 The projective case

It is natural to ask whether Theorem 10.1 is valid using the projective degree instead
of affine degree. Let us redfine F a(d) to be the space of foliations of projective de-
gree d in P2

k and with an invariant line. Its subvariety M a(d) parametrizes foliations
with a center which does not lie on the invariant line. According to Exercise 28 we
can only talk about L a(d1,d2, . . . ,ds)⊂F a(d) if one of di’s is equal to 1.

Exercise 10.1 The only algebraic leaves of a generic logarithmic foliation

s

∑
i=1

λi
d fi

fi
, s≥ 2,

in P2
k are { fi = 0}, i = 1,2, . . . ,

Let a+1,b+1 be natural numbers, c = gcd(a+1,b+1), q := a+1
c and p := b+1

c .
We take lines l1, l2, · · · , la+1, ľ1, ľ2, · · · , ľb+1 in general position in P2

k. Let also

F := l1l2 · · · la+1, G := ľ1 ľ2 · · · ľa+1.

We consider the foliation F0 given by

ω := p
a+1

∑
i=1

dli
li
−q

b+1

∑
j=1

dľi
ľi

=
pGdF−qFdG

FG
). (10.2)

which is of degree d := a+b.

Exercise 10.2 The space of logarithmic foliations L p(d1,d2, . . . ,ds), d := d1 +
d2 + · · ·+ds−2 constains the point F0 given by (10.2) with d = a+b. Determine
the number of branches of L p(d1,d2, . . . ,ds) near F0.

The following conjecture seems to be quite accessible following the same line of
arguments as in Theorem 10.1.

Conjecture 10.1 For d ≥ 2 L p(d1,d2, . . . ,ds) is a component of M p(d), where
d = d1 +d2 + . . .+ds−2.

For s = 2 this conjecture has been proved in [Mov04a, Mov00].



Chapter 11
Picard-Lefschetz theory

The most simple foliations are fibrations. These foliations lack dynamics, as all the
leaves are algebraic. However, they enjoy a beautifull topological theory which is
known as Picard-Lefschetz theory. In this chapter we deal with fibrations by curves
in P2, however, the theory can be developed for fibrations on projective varieties
of arbitrary dimension. Our main reference for this Chapter are Arnold, Gusein-
Zade and Varchenko’s book [AGZV88] which is mainly suitable for local study
of fibrations. An adptation for fibrations in C2 has been done in the author’s book
[Mov19, Chapter 6].

11.1 Fibration

Let f ∈ k(x,y) be rational function in x,y. In homogeneous coordinates [x : y : z] we
can write f = F(x,y,z)

G(x,y,z) , where F and G are two homogeneous polynomial of the same
degree and with no common factor.

Definition 11.1 The indeterminacy set R of f is the set of points in P2 in which f
has the form 0

0 . This is namely

R := {F = 0, G = 0}.

Let X = P2
k we have a map f : X\R→ P1

k and we sometimes write it f : X 99K P1
k

knowing that it is not defined in R.

Theorem 11.1 There is a smooth algebraic variety X̃ , regular maps f̃ : X̃→ P1 and
π : X̃ → X, all defined over k, such that

X̃

f̃ ��

π // X

f
��
P1
k

(11.1)
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84 11 Picard-Lefschetz theory

commutes, that is, f ◦π = f̃ .

Proof. We use the desingularization theorem for the holomorphic foliation F =
F (d f ) in X . The indeterminacy points of f are singular points of F . We perform
a sequence of blow-ups at R and obtain π : X̃ → X such that the singularities of
F̃ := π−1(F ) over R are reduced singularities. Let f̃ := f ◦ π . We claim that f̃
induces a morphism f̃ : X̃ → P1

k such that the diagram (11.1) is commutative. For
this we have to prove that f̃ is regular, that is, it has no indeterminacy points. This
follwos from Proposition 29. ut

11.2 Ehresmann’s fibration theorem

In this section we need the following version of Ehresmann’s fibration theorem.

Theorem 11.2 (Ehresmann’s Fibration Theorem [Ehr47]). Let f : Y → B be a
proper submersion between the C∞ manifolds Y and B. Then f fibers Y locally
trivially, that is, for every point b ∈ B there are a neighborhood U of b and a C∞-
diffeomorphism φ : U× f−1(b)→ f−1(U) such that

f ◦φ = π1 = the first projection.

Moreover, if N ⊂ Y is a closed submanifold (not necessarily connected) such that
f |N is still a submersion then f fibers Y locally trivially over N, that is, the diffeo-
morphism φ above can be chosen to carry U× ( f−1(b)∩N) onto f−1(U)∩N.

The map φ is called the fiber bundle trivialization map.
Let f be a rational function in P2 = P2

C. In this section we work over complex
numbers and we deal with the toplogy of fibers of f . The indeterminacy set R is
discrete and the following holomorphic function is well-defined: f : X −R → P1.
We use the following notations

LK = f−1(K), XK = LK , K ⊂ P1

For any point c ∈ P1 by Lc and Xc we mean the set L{c} and X{c}, respectively.
Throughout the text by a compact f -fiber we mean Xt and by a f -fiber only we
mean Lt . We cannot use Ehresmann’s fibration theorem directly to f , as it is not
proper map.

Theorem 11.3 (Ehresmann’s fibration theorem for rational functions) There ex-
ists a finite subset C = {c1,c2, . . . ,cr} of P1 such that f fibers X−R locally trivially
over B = P1−C, that is, for every point b ∈ B there is a neighborhood U of b and a
C∞-diffeomorphism φ : U× f−1(c)→ f−1(U) such that

f ◦π = π1 = the projection on the first coordinate .
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Fig. 11.1 Atypical fibers due to their behaviour at infinity

Proof. The main ingredients of the proof are Ehresmann’s fibration theorem and
Seidenberg’s desingularization theorem. We use Theorem 11.1 and we have a com-
mutative diagram (11.1). The surface X̃ is compact and f̃ is regular. Therefore f̃ is
is a proper map. Let P1,P2, . . . ,Ps, all isomorphic to P1, be the set of all blow-up
divisors such that f̃ restricted to Pi is not a constant map. The set C is the union of
the crtical values of f̃ and f̃ |P, where P = ∪s

i=1Ps. We apply Theorem 11.2 to the
pair (X̃\ f̃−1(C),P\( f̃ |P)−1(C) and get the result. ut

Remark 11.1 In general the set C in Theorem 11.3 is larger than the set of critical
values of f : X −R→ P1. This is also clear in the proof of this theorem. Fibers of
f which become tangent to a blow-up divisor Pi must be also excluded in order to
state Ehresmann’s fibration theorem.





Chapter 12
Coronavirus and differential equations

The main objective of the present chapter is to find a possible differential equation of
the function of number of infected people, let us say x(t), in a virus outbreak. The
idea is to insert all the possible parameters, such as closing schools, using masks
etc, as mathematical parameters (numbers) into this differential equation, and to see
whether it can be of some use to the society. It is written by the author in a self-
quarantine at home and during a coronavirus outbreak. We will start with the most
simple model/differential equation, and by inserting new parameters and variables,
we will try to make it as near to reality as possible.

12.1 Exponential growths

It is already part of our daily language that a virus expands exponentially. The
mathematical formulation of this is as follows. The unit of time is a day and x(t)
is the number of infected people in the day t. We assume that each infected per-
son transmits the virus each day to another c1 persons (for the moment a con-
stant/independent of time). The variation of infected people after ε days is hence

x(t + ε)− x(t) = c1εx(t)

After letting ε goes to zero it becomes

ẋ = c1 · x,

which implies x(t) = x(0) · ec1t . Therefore, the number of infected people growth
exponentially.
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88 12 Coronavirus and differential equations

12.2 When the number of infected people increases new
transmissions decrease

Since a population of a country is limited, it is better to take x(t) the percentage of
the infected people in a country and hence

0≤ x(t)≤ 1.

If all the population is infected then there will be no new transmission of the virus.
Therefore, it is reasonable to define a new variable 0 ≤ y(t) ≤ x(t) which is the
number of infected people who can actually transmit the virus. The variation of x(t)
is therefore c1y(t) and the variation of y(t) must decrese as x(t) gets near 1. The first
suggestion is {

ẋ = c1y
ẏ = y(1− x) (12.1)

Remark 12.1 We have used the multiplication of two variables in an ingenuine
way: For a bounded quantity y, the quantity y(1− x) goes to zero when 1− x goes
to zero.

Exercise 12.1 Show that for some constant c we have

y = c1(x−
x2

2
)+ c

In other words the foliation F has the first integral f := c1(x− x2

2 )− y.

12.3 After c2 days an infected person is cured

Under this hypothesis we are looking for the variation of infected people after c2ε

days. We have c1c2εy(t) new infected individuals and εx(t) cured individuals. The
differential equation becomes: {

ẋ = c1c2y− x
ẏ = y(1− x) (12.2)

Exercise 12.2 The foliation F has two singularities (0,0) and (1,a) in the affine
chart C2, where a = 1/c1c2. Find the other singularities at infinity and determine
whether they are reduced or not. If a singularity is not reduced apply the Seidenberg
resolution of singularities!

Remark 12.2 There are many meaningful and meaningless features of Figure 12.1.
First, it tells us no mather the initial values (x0,y0) with y0 ≤ x0 ≤ 1, at the end
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Fig. 12.1 (y− x) ∂

∂x + y(1− x) ∂

∂y

everybody will get infected. The spiral behaviour near the singularity (1,a) means
that once almost everybody is infected then there will be infection-and-getting-cured
oscilation: once an epsilon number of people are cured they will be infected again,
and on and on. Hopefully this is not the differential equation representing the reality
and we still have to insert a lot of parameters into our differential equation. The
fact that the number of infected people surpasses the population ( x(t) > 1) and
the number of infected people who can transmit the virus becomes bigger than the
number of infected people (y(t)> x(t)) do not match to reality.

Remark 12.3 The unit of time, one day, and the unit of person inside a fixed pop-
ulation, in infinitesimal levels suggest that the constants c1 and c2 must be small
numbers. Recall that the total population is assume to be 1. Therefore, the number
a = 1/c1c2 is big, and so, the singularity (1,a) is much above the x-axis. Having a
look at Figure 12.1 one observes that even in the early stages of outbreak we must
have y(t) > x(t). This does not combine with our initial assumption. If we want to
make sense out of this we might consider a scenario in which we have to assume that
there are people who are not infected but transmit the virus. One has to rewrite the
differential equation once again! If c1 = 0 or c2 = 0 then Figure 12.2 says that the
number of infected people will decrease even in the first stages of the virus outbrek,
however, those who transmit will increase.
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Fig. 12.2 −x ∂

∂x + y(1− x) ∂

∂y

Fig. 12.3 (y− x) ∂

∂x + y(1− x)x ∂

∂y

12.4 y is low at the eraly stages of the outbreak

We have assumed that the varuiation of y, is low when x is near to 1. The same must
be true for x near to zero. This gives us the contradictory fact that variation of the
number of people who infectes others at the begining is low. Anyway, we are leaded
to the differential equation in Figure 12.3.

Remark 12.4 Multiplication of a quantity with x so that it goes to zero when x goes
to zero, can be also done by xn. The same is also true for (1−x). This means that in
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general we must consider {
ẋ = ay− x
ẏ = y(1− x)nxm , n,m ∈ N. (12.3)





Chapter 13
Discussions with Camacho

13.1 Poincaré theorem II

We need to discuss the Poincaré theorem for vector fields defined over a field k
which is not necessarily algebraically closed such as the field of rational numbers.
Therefore, we might no be able to diagonalize it in k. We take

F (X) : (a11x1 +a12x2 + · · ·)
∂

∂x1
+(a21x1 +a22x2 + · · ·)

∂

∂x2

The equality (4.6) and ẋ j = (a j1x1 +a j2x2) imply that

(a11x1 +a12x2)
∂ξ j

∂x1
+(a21x1 +a22x2)

∂ξ j

∂x2
−a j1ξ1−a j2ξ2 = φ j(x1 +ξ1,x2 +ξ2)

(13.1)
This is a recursion in the coefficients of ξ1,ξ2.
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13.2 An example of Poincaré’s linearization

Let F := (F1,F2) : C2 → C2 with F1,F2 ∈ C[x,y] and F1(0,0) = F2(0,0) = 0. Let
also F1,F2 be foliations in C2 given by respectively d(F1

F2
) and d( x1

x2
). The foliation

F1 is mapped to F2 under F . Let

X :=
−(F2F1,x2 −F1F2,x2)

∂

∂x1
+(F2F1,x1 −F1F2,x1)

∂

∂x2∣∣∣∣F1,x1 F1,x2
F2,x1 F2,x2

∣∣∣∣ (13.2)

and

Y = x1
∂

∂x1
+ x2

∂

∂x2
.

Proposition 13.1 We have

DF(X(x)) = Y (F(x)), ∀x ∈ C2.

Proof. This is a direct computation. ut

Proposition 32 is our first example of Poincaré’s linearization. For this we have to
assume that the linear parts of F1 and F2 are linearly independent. In other words,
the derivation of F at 0 has non-zero determinant. This implies that 0 is not the pole
locus of X . In this way F turns out to be the composition of a linear transformation
in C2 with the linearization of X around 0.

Remark 13.1 It is easy to show that{
f ∈ Biho(C2,0)

∣∣∣ f ∗Y = Y
}
= GL(2,C).

Therefore, if in Proposition 32 the map F is tangent to identity at 0 then it is unique,
in the sense, that any two such linearizations tangent to identity are equal.

13.3 Space of foliations with a radial singularity

Proposition 13.2 The space F (d)radial ⊂F (d) of foliations with a radial singu-
larity is an ireeducible algebraic subset of F (d).

Proof. Without loss of generality we only consider foliations with a radial singular-
ity at (0,0). If the foliation is given by ω := P(x,y)dy−Q(x,y)dx then the condition
of having a radial singularity at (0,0) is that the linear part of ω is λ (x ∂

∂x + y ∂

∂y ).
ut
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13.4 Deformation of a linearization

Let us consider the linearization in Proposition 32. We consider deformations

Xε = X + εX1 + · · · , Fε = F + εF1 + · · · , Yε = Y + εY1 + · · ·

such that
DFε(Xε(x)) = Yε(Fε(x)). (13.3)

where x = (x1,x2). We further assume that the singularity pε of Fε near to p0 =
(0,0) is radial.

The equality corresponding to the coefficient of ε1 is

DF1(X)+DF(X1) = Y1(F(x))+Y (F1(x)). (13.4)

We write this in the following format

DF1(X)−Y (F1(x)) = Y1(F(x))−DF(X1). (13.5)

The right hand side of this equality consists of known data, and F1 is unknown.
Restricting to a leaf of F1 we arrive at the following type of phenomena.

Let S be a Riemann surface and v and p be respectively a vector field and a
meromorphic function on S. We are interested on the solution f of the following
non-linear differential equations

d f (v)− f = p.

Let us analyze this differential equations in a local chart z for S such that

v = za ∂

∂ z
, f =

∞

∑
i=b

fizi, p =
∞

∑
i=c

pizi
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Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 1987.
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Chapter 14
Holonomy II

14.1 Second derivative of the holonomy map

We know that for a holonomy map h : (C,0)→ (C,0) the number h′(0) is inde-
pendent of the choice of coordinates in (C,0). Even if we did not know the formula
(3.7), based on this observation we may suspect about its existence. Now if h′(0) = 1
we may suspect in a similar way that there is a formula for h′′(0). In this section we
find such a formula.

Recall that ω

I is closed and so there is a holomorphic function Fω such that

ω = Id f .

Let also write
ω2 :=

dω1

ω
, ω1 :=

dω

ω

Proposition 14.1 Consider the situation of corollary (??). Then

− h′′(z)
h′(z)

=
∫

δz,h(z)

ω2ω1 +h′(z)(
ω1

ω
|Σ2)(h(z))−

ω1

ω
|Σ1 (z) (14.1)

Proof. By Corollary (??) we have

−h′′(z)
h′(z)

=
d
dz

(
∫

δz,h(z)

ω1)

= lim
ε→0

(
∫

δz+ε,h(z+ε)
−
∫

δz,h(z)
)ω1

ε

=

∫
∆ε

dω1 +
∫

δh(z),h(z+ε)
ω1−

∫
δz,z+ε

ω1

ε

99
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Here δz,z+h, resp. δh(z+ε),h(z) is a straight path in Σ1, resp. Σ2, which connects z to
z+ h, resp. h(z+ h) to h(z), and ∆ε is a two dimensional embedded disk with the
boundary

δz+ε,h(z+ε)−δh(z),h(z+ε)−δz,h(z)+δz,z+h.

Now we write
dω1 = ω2I∧d f

and we use
∂

∂ε

∫
∆ε

ω2I∧d f =
∫

δz.h(z)

ω2I =
∫

δz.h(z)

ω2ω1

In the formula (14.1) if δp is a closed path and h′(p) = 1 we have

h′′(p) =
∫

δp

ω2ω1 (14.2)

Remark 14.1 Note that ω1 =
dIω
Iω

and so if
∫

δp
ω1 = 0 then the analytic continua-

tion of Iω in the leaf Lp and along the cycle δp leads to the same value of Iω in a
neighborhood of p.

The formula (14.2) remains invariant if we substitute ω1 with ω̃1 = ω1 + f ω ,
where f is a holomorphic function in U :∫

δp

ω̃2ω̃1 =
∫

δp

(ω2 + f ω1−d f )ω1 =
∫

δp

ω2ω1 + f (p)
∫

δp

ω1 =
∫

δp

ω2ω1

Exercise 14.1 Consider the holonomy with h′(0) = 1, h′′(z) = ·= h(n)(0) = 0. Ex-
press the number h(n+1) in terms of iterated integrals.

Exercise 14.2 Another way to prove the Poincaré formula is as follows: We use
Stokes formula for ∆ε and ω and divide the equality by ε and let ε go to 0. The
obtained formula is equivalent to the Poincaré formula after using some well-known
properties of iterated integrals.

14.2 Unstable limit cycles

In my opinion an effective solution to the hilbert 16th problem would need a sys-
tematic study of the loci of unstable limit cycles. Bellow I explain this.

Let F0 = F (ω) be an algebraic foliation with an unstable limit cycle δ0, i.e.∫
δ

dω

ω
= 0. We consider a perturbation Fε , ε ∈ (Cn,0) of F0.

Proposition 14.2 The loci of parameters ε with an unstable limit cycle near δ0 is a
germ of an analytic variety in (Cn,0).

Proof. Let m be the multiplicity of δ0. The foliation Fε has m limit cylces δ1, . . . ,δm,
counting with multiplicity, around δ0. The function
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A1 = Π1≤i≤n

∫
δi

dωε

ωε

is holomorphic function in (Cn,0) and its zero set is the loci of unstable limit cycles
around δ . Note that the function

A2 = (Π1≤i≤n

∫
δi

dωε

ωε

)(
n

∑
i=1

∫
δi

dωε

ωε

)−1

is zero restricted to the zero set of A1.

Now consider X(d) the topological closure of the set of foliations F ∈F (d) with
an unstable limit cycles. The set F (d) is a projective space and hence by GAGA
principle if X(d) were locally an analytic variety, it would be an algebraic subset.
The main point is that X(d) is not an analytic set around foliations with a first
integral.

Consider a family of cycles δt , t ∈U in the Hamiltonian foliation F0. The closure
of the loci X of parameters ε such that Fε has a limit cycle near the family δt is an
analytic set given by the zeros of hε(z)− z,(z,ε) ∈ U × (Cn,0). Now the loci of
unstable limit cycles is given by the projection of Sing(X) on ε coordiante. It is not
a germ of an analytic variety because under projection U×{0}maps to 0 and in fact
we have sectors of analytic varieties which can be extended analytically according
to the Picard-Lefschetz theory of F0.

14.1. Is X(d) tangent to some polynomial 1-form in F (d)? In order to investigate
this question, one must have some techniques for taking differential of integrals with
respect to a deformation parameter. For example if we have a family of limit cycles
δε arising from a zero of an abelian integral in d f + εω then find a formula for

∂

∂ε

∫
δε

α

∣∣∣∣
ε=0

14.3 Generic conditions

Theorem 14.1 The projective variety Pn is complete, that is, for all algebraic va-
rieties V , the projection map π : Pn×V →V is closed. This means that any closed
subset W of Pn×V , π(W ) is a closed subset of V . In particular, any closed subver-
iety of Pn is complete

For a proof of the above theorem see for instance [Mil]. Since V\π(W ) is a Zariski
open set, if we prove that it is non-empty then a generic point of V is not in the image
of π . Sometimes, it is hard to find points in V\π(W ) despite the fact that we are sure
that is is a non-empty Zariski open set. In these sitations, we take an arbitrary point
of x ∈ Pn×V and compute the map induced in the tangent spaces (TPn×V )x →
(TV )π(x) and prove that it is not surjective. For instance, if dim(W ) < dim(V ) this
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is always the case. This also prove that V\π(W ) is non-empty. In some sitations
W = ∪s

i=1Wi is a union of some closed varieties, and it is easier to find points in
each V\π(Wi). This implies that V\π(W ) is non-empty and so we do not need to
give explicit examples of its elements.

In the space of fibration F p

Gq the following conditions are generic:

1. {F = 0} and {G = 0} are smooth varieties;
2. {F = 0} and {G = 0} intersect each other transversally;
3. The restriction of f to Pn\({F = 0}∪{G = 0}) has nondegenerate critical points,

namely p1, p2, . . . , pr.
4. The images c1 = f (p1),c2 = f (p2), . . . ,cr = f (pr) are distincts.

For the proof we first take V the parameter space of F p

Gq . The set Wi⊂Pn×V, i= 1,2
is the algebraic closure of the set of (F p

Gq , p) such that for i = 1 (1) fails, and for i = 2
either (2) or (3) fails. Let also W3 ⊂ Pn×Pn×V the closure of the set of (F p

Gq , p,q)
such that either (4) fails, that is, f (p) = f (q). In this case we use the fact that Pn×Pn

is complete.
It remains to find an explicit example of F p

Gq which satisfies the above generic
conditions. This might get hard. That is why we have introduced many Wi’s. Finding
a point in V\π(W1) is trivial. For instance, we take F = 0 and G= 0 Fermat varieties.
An example of a point in both V\π(Wi) i = 2,3 is as follows. We take F and G a
product of lines in general position. This example satisfies the condition (2), (3) or
(4), see Exercise (14.2).

14.2. Show that the rational function

F p

Gq =
(x(x−1)(x−2) · · ·(x−a))p

(y(y−1)(y−2) · · ·(y−b))q , ap = bq

has (a− 1)(b− 1) non-degenerated critical points with distinct images. Show also
that

f = xd+1 + yd+1− (d +1)x− (d +1)y : C2→ C.

has d2 non-degenerated critical points with distinct images.

14.4 Tame polynomials

Our main example for Picard-Lefschetz theory is the fibration of tame polynomials
which has been extensively studied in [Mov11], Chapter 6.

Definition 14.1 We say that a polynomial f ∈ C[x,y] of degree d is tame if there
are positive integers α1 and α2 such that the last homogeneous part g of f in the
weighted ring C[x,y],weight(x) = α1 and weight(y) = α2, has an isolated singular-
ity at the origin.

Note that For α1 = α2 = 1, g has an isolate singularity at the origin if and only if
g = (x−a1y)(x−a2y) · · ·(x−ady) and ai’s are distict.
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Proposition 14.3 Let C := {c1,c2, . . . ,cr} be the set of critical values of f . Then f
is a C∞ fibration over C\C

Proof. A proof can be found in [Mov11]. Theorem 6.1. We have to verify that there
is no atypical fibers due to their behaviour at the indeterminacy points. If f is a tame
polynomial with weight(x) = α1 and weight(y) = α2 then the same is true replacing
αi with αi

(α1,α2)
, and so, we can assume that (α1,α2) = 1.

For α1 = α2 = 1 we only need to do just one blow-up at each indeterminacy
point.

ut

Example 14.1 Fibrations with multiple fibers Let us consider the fibration in P2

given by the rational function F p

Gq , where F and G are two relatively prime irreducible

polynomials in an affine chart C2 of P2, deg(F)
deg(G) =

q
p and g.c.d.(p,q) = 1.

14.5 Monodromy and vanishing cycles

For this section we use the notation of the book [Mov19].

Theorem 14.2 Suppose that H1(X −X∞,Q) = 0. Then a distinguished set of van-
ishing 1-cycles related to the critical points in the set C\{∞}= {c1,c2, . . . ,cr} gen-
erates H1(Lb,Q).

Note that in the above theorem ∞ can be a critical value of f .

Definition 14.2 The cycle δ in a regular fiber Lb is called simple if the action of
π1(B,b) on δ generates H1(Lb,Q).

Note that in the above definition we have considered the homology group with ra-
tional coefficients. Of course, not all cycles are simple. For instance if the mero-
morphic function in a local coordinate (x,y) around q ∈ R has the form x

y , then
the cycle around q in each leaf has this property that it is fixed under the action of
monodromy, therefore it cannot be simple.
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