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My research in mathematics turns around abelian integrals which I am going to explain with
a simple example. Let us take the polynomial f = y2 − x3 + 3x in two variables x and y and the
family of elliptic curves Et : {f − t = 0}, t ∈ C. Only for t = −2, 2 the curve Et is singular. For t a
real number between 2 and −2 the level surface f−1(t) ⊂ R2 contains an oval δt. The polynomial
f is a first integral of the differential equation

Fε :
{

ẋ = 2y + εx2

2
ẏ = 3x2 − 3 + εsy

.

with ε = 0. If the abelian integral
∫

δt
(x2

2 dy−sydx) = 0 is zero for t = 0 or equivalently if s ∼ 0.9025
then for ε near to 0, Fε has a limit cycle near δ0. In fact for ε = 1 such a limit cycle still exists
and it is depicted in Figure (1). The origin of the above discussion comes form the second part of
the Hilbert sixteen problem on limit cycles ([1]).

Every abelian integral satisfies a linear differential equation which is called the Picard-Fuchs
equation (comming from geometry). For instance

∫
δt

dx
y satisfies

(1)
5
36

I + 2tI ′ + (t2 − 4)I ′′ = 0

I general one has the linear system

Y ′ =
1

t2 − 4

(−1
6 t 1

3−1
3

1
6 t

)
Y

which is called the Gauss-Manin connection of the family Et, t ∈ C. The main point behind the
calculation of Picard-Fuchs equations and Gauss-Manin connections is the techniques of derivation
of an integral with respect to a parameter and simplifying the result (see [4] for the implementation
of algorithms for tame polynomials in Singular).

We may transfer the singularities −2, 2 of (1) to 0 and 1 and obtain a recursive formula for the
coefficients of the Taylor series around 0 of its solutions. Since the integral

∫
δt

dx
y is holomorphic

around t = −2, we get ∫
δt

dx

y
=
−2π√

3
F (

1
6
,
5
6
, 1| t + 2

4
),

where

F (a, b, c|z) =
∞∑

n=0

(a)n(b)n
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Figure 1: A limit cycle crossing (x, y) ∼ (−1.79, 0)

1



is the Gauss hypergeometric function and (a)n := a(a + 1)(a + 2) · · · (a + n− 1). An elegant way
to prove the statement

(2) F (
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6
, 1| ±

√
54001
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120
+

1
2
)

π2

Γ( 1
3 )3

∈ Q̄,

is as follows: The elliptic curve Lt has the j invariant 4
t2−4 . For the values of t such that j =

24 · 33 · 53, Lt admits a complex multiplication by the field Q(
√
−3). Now one uses the Chowla-

Selberg Theorem on the periods of differential forms of the first kind on elliptic curves with complex
multiplication. In the next paragraph we give another interpretation of (2) in terms of a Hodge
cycle of a four dimensional cubic hypersurface.

Let us consider the affine hypersurface

Uc : x3
1 + x3

2 + · · ·+ x3
5 − x1 − x2 − c = 0, c ∈ C− {± 4

3
√

3
, 0}

in C5 and its compactification Mc in the projective space of dimension 5. The Hodge decomposition
of the 4-th primitive cohomology of Mc has the Hodge numbers 0, 1, 20, 1, 0 and a generator of H3,1

piece restricted to Uc is represented by the differential 4-form

α :=
(
(972c2 − 192)x1x2 + (−405c3 − 48c)x2 + (−405c3 − 48c)x1 + (243c4 − 36c2 + 64)

)
·

5∑
i=1

(−1)i−1xidx1 ∧ · · · dxi−1 ∧ dxi+1 ∧ · · · ∧ dx5

(see [3,5]). Therefore, a cycle δ ∈ H4(Mc, Z) with support in Uc is a Hodge cycle if and only
if

∫
δ
α = 0. It turns out that the Q-vector space of the periods of α is spanned over Q by

Γ( 1
3 )3Q(ζ3) times the periods of dx

y over the elliptic curve Lt : y2 − x3 + 3x− t, t = 2− 27
4 c2. For

j = 1
t2−4 = 24 · 34 · 53, Lt has a complex multiplication by Q(ζ3) and this gives us a Hodge cycle δ

in H4(Mc, Q). One of the consequences of the Hodge conjecture is that for c ∈ Q̄ the integration
over δ of any 4-differential form in C5, which is defined over Q̄ and is without residue at infinity,
belongs to π2Q̄. Since the Hodge conjecture is proved for cubic hypersurfaces of dimension 4, we
get another interpretation of (2). For more details see [2].

Finally one can take families of elliptic curves depending on many parameters and investigate
certain differential equations in parameter spaces. For instance, for the family of elliptic curves

y2 − 4(x− t1)3 + t2(x− t1) + t3,

the abelian integral
∫

xdx
y is contant along the solutions of the Ramanujan ordinary differential

equation

(3)


ṫ1 = t21 − 1

12 t2
ṫ2 = 4t1t2 − 6t3
ṫ3 = 6t1t3 − 1

3 t22

.

Using this, one can prove that every transcendental leaf of (3) intersects points with algebraic
coordinates at most once. For more details see [4].
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