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Abstract. Mauduit and Sárközy introduced and studied certain nu-
merical parameters associated to finite binary sequences EN ∈ {−1, 1}N

in order to measure their ‘level of randomness’. These parameters, the
normality measure N (EN ), the well-distribution measure W (EN ), and
the correlation measure Ck(EN ) of order k, focus on different combinato-
rial aspects of EN . In their work, amongst others, Mauduit and Sárközy
(i) investigated the relationship among these parameters and their min-
imal possible value, (ii) estimated N (EN ), W (EN ), and Ck(EN ) for
certain explicitly constructed sequences EN suggested to have a ‘pseu-
dorandom nature’, and (iii) investigated the value of these parameters
for genuinely random sequences EN .

In this paper, we continue the work in the direction of (iii) above
and determine the order of magnitude of N (EN ), W (EN ), and Ck(EN )
for typical EN . We prove that, for most EN ∈ {−1, 1}N , both W (EN )

and N (EN ) are of order
√

N , while Ck(EN ) is of order
√

N log
(

N
k

)
for any given 2 ≤ k ≤ N/4. We also prove a lower bound for the
correlation measure Ck(EN ) (k even) for arbitrary sequences EN , which,

in particular, gives that minEN Ck(EN ) ≥ ck

√
N for some ck > 0 for

any constant even k.

1. Introduction and statement of results

In a series of papers, Mauduit and Sárközy studied finite pseudorandom
binary sequences EN = (e1, . . . , eN ) ∈ {−1, 1}N . In particular, they investi-
gated in [11] the ‘measures of pseudorandomness’ to be defined shortly. The
readers interested in detailed discussions concerning the definitions below
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and further related literature are referred to [10] (WORDS, Rouen 1999)
and [11].

Let k ∈ N, M ∈ N, X ∈ {−1, 1}k, a ∈ Z, b ∈ N, b > 0, and D =
(d1, . . . , dk) ∈ Nk with 0 ≤ d1 < · · · < dk < N be given. Below, we
write cardS for the cardinality of a set S, and if S is a set of numbers, then
we write

∑
S for the sum

∑
s∈S s. We let

T (EN ,M, X) = card{n : 0 ≤ n < M, n + k ≤ N, and

(en+1, en+2, . . . , en+k) = X}, (1)

U(EN ,M, a, b) =
∑

{ea+jb : 1 ≤ j ≤ M, 1 ≤ a + jb ≤ N for all j}, (2)

and

V (EN ,M,D) =
∑

{en+d1en+d2 . . . en+dk
: 1 ≤ n ≤ M, n + dk ≤ N}. (3)

In words, T (EN ,M, X) is the number of occurrences of the pattern X in EN ,
counting only those occurrences whose first symbol is among the first M
elements of EN . The quantity U(EN ,M, a, b) is the ‘discrepancy’ of EN

on an M -element arithmetic progression contained in {1, . . . , N}. Finally,
V (EN ,M, D) is the ‘correlation’ among k length M segments of EN ‘rela-
tively positioned’ according to D = (d1, . . . , dk).

The normality measure of EN is defined as

N (EN ) = max
k

max
X

max
M

∣∣∣∣T (EN ,M, X)− M

2k

∣∣∣∣ , (4)

where the maxima are taken over all k ≤ log2 N , X ∈ {−1, 1}k, and 0 <
M ≤ N + 1− k. The well-distribution measure of EN is defined as

W (EN ) = max{|U(EN ,M, a, b)| :
a, b, and M such that 1 ≤ a + b < a + Mb ≤ N}. (5)

Finally, the correlation measure of order k of EN is defined as

Ck(EN ) = max{|V (EN ,M,D)| : M and D such that M + dk ≤ N}. (6)

In [3], Cassaigne, Mauduit, and Sárközy studied, amongst others, the value
of W (EN ) and Ck(EN ) for random binary sequences EN , with all the 2N se-
quences in {−1, 1}N equiprobable, and the minimal possible values for W (EN )
and Ck(EN ). They proved the following theorems. (Below and elsewhere in
this abstract, we write log for the natural logarithm.)
Theorem A. For all ε > 0, there are numbers N0 = N(ε) and δ = δ(ε) > 0
such that for N ≥ N0 we have

δ
√

N < W (EN ) < 6
√

N log N (7)

with probability at least 1− ε.



MEASURES OF PSEUDORANDOMNESS 3

Theorem B. For every integer k ≥ 2 and real ε > 0, there are num-
bers N0 = N0(ε, k) and δ = δ(ε, k) > 0 such that for all N ≥ N0 we have

δ
√

N < Ck(EN ) < 5
√

kN log N (8)

with probability at least 1− ε.
Theorem C. For all k and N ∈ N with 2 ≤ k ≤ N , we have

(i) min{Ck(EN ) : EN ∈ {−1, 1}N} = 1 if k is odd,
(ii) min{Ck(EN ) : EN ∈ {−1, 1}N} ≥ log2(N/k) if k is even.
As it turns out, an improvement of the upper bound in Theorem A may

be deduced from a proof of a closely related result of Erdős and Spencer.
Indeed, an argument in [7, Chapter 8] tells us that one may drop the loga-
rithmic factor in (7), at the expense of increasing the multiplicative constant.

Let us also observe that it follows from the results of Roth [14] and Ma-
toušek and Spencer [9] that the order of magnitude of

min
{
W (EN ) : EN ∈ {−1, 1}N

}
is N1/4. In [3], it is conjectured that for any even k ≥ 2 there is a con-
stant c > 0 such that for N →∞ we have

min
{
Ck(EN ) : EN ∈ {−1, 1}N

}
� N c,

which would be a considerable strengthening of Theorem C(ii).
In this extended abstract, we state stronger versions of Theorems A and B,

we prove the conjecture above in a more general form, and we give a result
concerning the typical value of N (EN ).

Theorem 1. For any given ε > 0 there exist N0 and δ > 0 such that
if N ≥ N0, then

δ
√

N < W (EN ) <
1
δ

√
N (9)

with probability at least 1− ε.

Theorem 1 above is essentially proved in Erdős and Spencer [7, Chapter 8].
The reader is referred to [8] for an alternative proof, the main idea of which
is also used in the proof of Theorem 4 below (see Section 2.2).

We next state a result that establishes the typical order of magnitude
of Ck(EN ) for a wide range of k, including values of k proportional to N .

Theorem 2. Let 0 < ε0 ≤ 1 be fixed and let ε1 = ε1(N) = (log log N)/ log N .
There is a constant N0 = N0(ε0) such that if N ≥ N0, then, with probability
at least 1− ε0, we have

2
5

√
N log

(
N

k

)
< Ck(EN ) <

√
(2 + ε1)N log

(
N

(
N

k

))

<

√
(3 + ε0)N log

(
N

k

)
<

7
4

√
N log

(
N

k

)
(10)
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for every integer k with 2 ≤ k ≤ N/4.

The proof of Theorem 2 is sketched in Section 2.1. Our next result tells
us that Ck(EN ) is concentrated in the case in which k is small.

Theorem 3. For any fixed constant ε > 0 and any integer function k =
k(N) with 2 ≤ k ≤ log N − log log N , there is a function Γ(k, N) and a
constant N0 for which the following holds. If N ≥ N0, then the probability
that

1− ε <
Ck(EN )
Γ(k, N)

< 1 + ε (11)

holds is at least 1− ε.

Theorem 3 follows from standard arguments involving martingales (see [8]

for details). Clearly, Theorem 2 tells us that Γ(k, N) is of order
√

N log
(
N
k

)
.

We now turn to the normality measure N (EN ).

Theorem 4. For any given ε > 0 there exist N0 and δ > 0 such that
if N ≥ N0, then

δ
√

N < N (EN ) <
1
δ

√
N (12)

with probability at least 1− ε.

The proof of Theorem 4 is sketched in Section 2.2. Finally, we state our
result concerning the minimal possible value for the parameter Ck(EN ).

Theorem 5. If k and N are natural numbers with k even and 2 ≤ k ≤ N ,
then

Ck(EN ) >

√
N

3(k + 1)
(13)

for any EN ∈ {−1, 1}N .

The proof of Theorem 5 is given in Section 3. In Section 4, we remark that
the upper bounds in Theorems 1 and 4 are in a certain sense best possible.

2. Estimates for Ck(EN ) and N (EN ) for random sequences EN

We shall sketch the proofs of Theorems 2 and 4 in this section. Recall that
these results concern random elements EN from the uniform space {−1, 1}N .
In this section, unless stated otherwise, EN will always stand for such a
random sequence.

2.1. Proof of Theorem 2. The upper estimate for Ck(EN ) follows from
standard estimates for the binomial distribution, and we refer the reader
to [8] for the details. Here, we shall concentrate on the following result.
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Lemma 6. With probability tending to 1 as N →∞, we have

Ck(EN ) >
2
5

√
N log

(
N

k

)
(14)

for every integer k with 2 ≤ k ≤ N/4.

We start by stating a technical result without proof.

Fact 7. Let m = bN/3c. For every sufficiently large N , the following hold.
(i) If 2 ≤ k ≤ log m, then√

N log
(

N/3
k

)
≥ 0.99

√
N log

(
N

k

)
. (15)

(ii) If log m < k ≤ N/4, then√
N log

(
N/3
k

)
≥

√
1− 10−10

3
N log

(
N

k

)
. (16)

We now give the proof of the main result in this section.

Proof of Lemma 6. Set m = bN/3c, and recall that we write S(m, 1/2) for
a random variable with binomial distribution Bi(m, 1/2). Fix 2 ≤ k ≤ N/4.
We are interested in the largest integer r for which

P
(

S(m, 1/2) ≥ 1
2
(m + r)

)
≥ k2(log N)

(
m + 1
k − 1

)−1

(17)

holds. Indeed, we let

r(m) = rk(m) = max {r ∈ N : inequality (17) holds} . (18)

We need the following fact concerning r(m).

Fact 8. For every sufficiently large N , the following hold.
(i) If 2 ≤ k ≤ log m, then

r(m) ≥ 0.99

√
2m log

(
m + 1
k − 1

)
. (19)

(ii) If log m < k ≤ N/4, then

r(m) ≥ (1− 10−10)

√
m

log 2
log

(
m + 1
k − 1

)
. (20)

(iii) If 2 ≤ k ≤ N/4, then

r(m) ≥ 2
5

√
N log

(
N

k

)
. (21)
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We shall not prove Fact 8 here. Inequality (21) in Fact 8, which follows
from (19) and (20) and the inequalities in Fact 7, will be used shortly.

To prove Lemma 6, we shall show that, with probability ≤ 2/k2 log N , we
have

Ck(EN ) ≤ rk(m), (22)
and then we shall sum over all 2 ≤ k ≤ N/4. This gives that (22) holds for
some k with 2 ≤ k ≤ N/4 with probability O(1/ log N) = o(1). Therefore,
(22) fails for all 2 ≤ k ≤ N/4 with probability 1 − o(1), and hence, taking
into account (21), Lemma 6 will be proved.

Let 2 ≤ k ≤ N/4 be fixed. Our strategy to estimate the probability
that (22) should hold will be as follows. Recall EN = (e1, . . . , eN ) and
let u = (e1, . . . , em). Let Dk be the set of (k − 1)-tuples D = (d1, . . . , dk−1)
with m ≤ d1 < · · · < dk−1 ≤ 2m. For each D ∈ Dk, let

vD = (e1+d1e1+d2 . . . e1+dk−1
, . . . , em+d1em+d2 . . . em+dk−1

), (23)

and let A(D) be the event that

|〈u, vD〉| > r(m) = rk(m) (24)

holds. It suffices to show that some A(D) (D ∈ Dk) holds with probability
at least 1− 2/k2 log N . For convenience, let X = X(EN ) be the number of
events A(D) (D ∈ Dk) that hold for EN . Let

p = p(m) = P
(

S(m, 1/2) ≥ 1
2
(m + r(m))

)
. (25)

Because of (18), we have

E(X) = p|Dk| = p

(
m + 1
k − 1

)
≥ k2 log N. (26)

We have now arrived at the key claim: the events A(D) (D ∈ Dk) are
pairwise independent. Although this somewhat surprising fact is crucial, we
shall omit its proof because of space constraints. (The reader is invited to
amuse himself or herself proving this; for a one-page proof, see [8]).

Claim 9. For all distinct D and D′ ∈ Dk, we have P(A(D) ∩A(D′)) = p2.

To complete the proof of Lemma 6, we make use of the following result,
which gives a lower bound for the probability of a union of pairwise in-
dependent events. We shall in fact state a stronger lemma, which has as
hypothesis that the events should be asymptotically negatively correlated.
Versions of this lemma may be found in [4] and [6]. More recently, Petrov
used this result to generalize the Borel–Cantelli lemma [12, 13].

Lemma 10. Let A1, . . . , AM be events in a probability space, each with
probability at least p. Let ε ≥ 0 be given, and suppose that P(Ai ∩ Aj) ≤
p2(1 + ε) for all i 6= j. Then

P
( ⋃

1≤j≤M
Aj

)
≥ Mp

1 + (M − 1)p(1 + ε)
> 1− ε− 2

Mp
.
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We conclude the proof of Lemma 6 combining Claim 9 and Lemma 10. It
suffices to notice that we have M =

(
m+1
k−1

)
pairwise independent events A(D)

(that is, ε = 0), and pM ≥ k2 log N (see (26)). Lemma 10 then tells us
that, with probability greater than 1 − 2/k2 log N , the event A(D) hap-
pens for some D ∈ Dk. We conclude that (22) occurs with probability at
most 2/k2 log N , and hence, as observed above, summing over all 2 ≤ k ≤
N/4, Lemma 6 follows. �

2.2. The normality measure N . Recall that the normality measure of
EN = (e1, . . . , eN ) ∈ {−1, 1}N is defined as

N (EN ) = max
k

max
X

max
M

∣∣∣∣T (EN ,M, X)− M

2k

∣∣∣∣ , (27)

where the maxima are taken over all k ≤ log2 N , X ∈ {−1, 1}k, and 0 <
M ≤ N + 1 − k, and T (EN ,M, X) is the number of occurrences of the
pattern X in EN , counting only those occurrences starting with some ej

with j ≤ M (see (1)). In this section, we outline the proof of Theorem 4.

Proof of Theorem 4 (Outline). We start with a sketch of the proof of the
lower bound in (12). We take k = 1 in (27); in fact, we consider T (EN , N, (1)),
the number of occurrences of 1 in EN . Then a simple application of the de
Moivre–Laplace theorem on the binomial distribution (see, e.g., [2]) tells us
that for any ε > 0, there is δ > 0 so that the lower bound in (12) holds with
probability at least 1− ε. It remains to prove the upper bound for N (EN )
for typical sequences EN .

The basic lemma that we shall use is Lemma 11 below. We shall consider
intervals of integers of the form Bm,r = (m2r, (m+1)2r]∩Z, where m and r
are non-negative integers. Clearly, |Bm,r| = 2r. We refer to the Bm,r as
blocks. For an integer k ≥ 1, X ∈ {−1, 1}k, and Bm,r a block with

max Bm,r = (m + 1)2r ≤ N − k + 1, (28)

we shall write T (EN , Bm,r, X) for the number of occurrences of the pat-
tern X in EN , counting only those occurrences starting in Bm,r, that is,
T (EN , Bm,r, X) = card{n ∈ Bm,r : E

(n)
N = X}, where E

(n)
N = (ej)n≤j<n+k,

and, as usual, EN = (e1, . . . , eN ).

Lemma 11. Let m and r be fixed non-negative integers with Bm,r ⊂ [1, N ].
For all D > 0, the probability that there is X ∈ {−1, 1}k with k ≤ log2 N
satisfying (28) such that∣∣∣T (EN , Bm,r, X)− 2r−k

∣∣∣ > D
√

2r (29)

is at most

O
(
e−2D2/9

)
+ 2(log2 N)2N exp

(
− 3D

log2 N
2r/2

)
.
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We shall not prove Lemma 11 here. Let us continue with the proof of
Theorem 4. Let us apply Lemma 11 with

D = C(K − r) (30)

for all blocks Bm,r ⊂ [1, N ], where K = 1 + blog2 Nc, and C is a large
constant. There are at most N/2r < 2K−r blocks Bm,r contained in [1, N ]
and any such block is such that r < K. Let us call a block Bm,r large if

r ≥ 4 log2 log2 N (31)

and small otherwise. If C is a large enough constant, then, with the value
of D given in (30), it follows from Lemma 11 that inequality (29) holds for
some large block Bm,r and some X ∈ {−1, 1}k (k ≤ log2 N) with probability

O
(
e−2C2/9

)
. (32)

Since the bound in (32) tends to 0 as C → ∞, we may and shall suppose
henceforth that (**) for all integers m, r, and k with Bm,r ⊂ [1, N ] satisfy-

ing (28) and (31), and every X ∈ {−1, 1}k (k ≤ log2 N), we have∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ ≤ C(K − r)

√
2r.

Now observe that, for any 1 ≤ M ≤ N − k + 1, we may write [1,M ] as
a disjoint union of blocks Bm,r (r ≤ log2 M < K) with at most one block
of the form Bm,r for each r. Indeed, such a decomposition of [1,M ] may
be read out from the binary expansion of M . Let us write I for the set
of the pairs (m, r) for which Bm,r occurs in this decomposition of [1,M ].
Furthermore, let I = I+ ∪ I− be the partition of I with

I+ = {(m, r) ∈ I : r satisfies (31)}. (33)

For later reference, observe that

|I−| < 4 log2 log2 N. (34)

Observe also that if (m, r) ∈ I−, then∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ ≤ 2r < (log2 N)4 (35)

for any X ∈ {−1, 1}k. Using (**), (34), and (35), one may check that, for
any X ∈ {−1, 1}k (k ≤ log2 N), we have∣∣∣T (EN ,M,X)−M2−k

∣∣∣ ≤ ∑
(m,r)∈I

∣∣∣T (EN , Bm,r, X)− 2r−k
∣∣∣ = O(

√
N),

as required (we omit the details). �
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2.2.1. Two remarks and a problem on N . We close this section with two
observations about the normality measure N and an open problem that we
find quite attractive. Put

Nk(EN ) = max
X

max
M

∣∣∣∣T (EN ,M,X)− M

2k

∣∣∣∣ , (36)

where the maxima are taken over all X ∈ {−1, 1}k and 0 < M ≤ N +1− k.
Note that, then, we have N (EN ) = max{Nk(EN ) : k ≤ log2 N}.

Our first remark is that minEN
Nk(EN ) = 1 for any fixed k: we consider

powers of appropriate de Bruijn sequences. More precisely, we take a circular
sequence in which every member of {−1, 1}k occurs exactly once, open it up
(turning it into a linear sequence), and repeat it many times.

Our second remark is that minEN
N (EN ) ≥ (1/2 − o(1)) log2 N : if a

sequence EN ∈ {−1, 1}N contains no segment of length k = log2 N −
log2 log2 N of repeated 1s (say), then Nk(EN ) ≥ log2 N = N/2k. If EN

contains such a segment, then N1(EN ) ≥ k/2 = (1/2)(log2 N − log2 log2 N).

Problem 12. Is there an absolute constant α > 0 for which we have

min
EN

N (EN ) > Nα

for all large enough N?

3. The minimum of the correlation measure

The proof of Theorem 5 that we give in this section is based on the
following elementary lemma from linear algebra [5, Lemma 7], whose proof
we include for completeness.

Lemma 13. For any symmetric matrix M = (Mij)1≤i,j≤n, we have

rank(M) ≥ (trace(M))2

trace(M2)
=

(∑
1≤i≤nMii

)2∑
1≤i,j≤nM2

ij

. (37)

Proof. Let r = rank(M). Then M has exactly r non-zero eigenvalues, say,
λ1, . . . , λr. By the Cauchy–Schwarz inequality, we have

(trace(M))2 = (λ1 + · · ·+ λr)2 ≤ r(λ2
1 + · · ·+ λ2

r) = r trace(M2).

As M is symmetric, we have trace(M2) =
∑

1≤i≤n

(∑
1≤j≤nMijMji

)
=∑

1≤i,j≤nM2
ij , as required. �

Proof of Theorem 5. First we remark that CN (EN ) = 1, so that (13) is
true for k = N , and we can suppose for a contradiction that there exist k
with 2 ≤ k ≤ N − 1 and EN ∈ {−1, 1}N such that

Ck(EN ) ≤

√
N

3(k + 1)
. (38)
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Set k = 2`, put

M =
⌊

N

k + 1

⌋
, (39)

and consider the 2M vectors v0, . . . , v2M−1 ∈ RM given by

vi =

 ∏
1≤j≤`

ei`+j ,
∏

1≤j≤`

ei`+j+1, . . . ,
∏

1≤j≤`

ei`+j+M−1

 (40)

for i ∈ {0, . . . , 2M − 1}.
Define the 2M × 2M matrix M = (Mij)1≤i,j≤2M putting

Mij = 〈vi, vj〉 (41)

for all (i, j) ∈ {1, . . . , 2M}2. Then M has the following properties:
(i) rank(M) ≤ M ,
(ii) Mii = M for any i ∈ {1, . . . , 2M},
(iii) |Mij | ≤ N/3(k + 1) for any (i, j) ∈ {1, . . . , 2M}2 with i 6= j.

Indeed, (i) and (ii) are clear and (iii) follows from (38). It follows from
Lemma 13 that

rank(M) ≥
(
2M2

)2

2M ×M2 + 2M(2M − 1)N/3(k + 1)

=
2M3

M2 + (2M − 1)N/3(k + 1)
,

so that, by (39), we have

rank(M) >
2M3

M2 + (2M − 1)(M + 1)/3
= M

6M2

5M2 + M − 1
> M,

which contradicts property (i) above. This contradiction shows that for no k
with 2 ≤ k ≤ N − 1 there is EN ∈ {−1, 1}N such that (38) holds, and our
result follows. �

4. Concluding remarks

The upper bounds in Theorems 1 and 4 are best possible in the following
sense. Let us consider W (EN ). We claim that, for any C > 0, there is ε0 > 0
such that

P
(
W (EN ) < C

√
N

)
≤ 1− ε0 (42)

for all large enough N . Therefore, the fact that the constant 1/δ in the upper
bound in Theorem 1 depends on ε cannot be avoided. Inequality (42) follows
simply from the de Moivre–Laplace theorem on the binomial distribution (we
omit the details). One may prove similar facts concerning the upper bound
in Theorem 4 by considering T (EN , N, (1)), the number of occurrences of 1
in EN .
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Problem 14. Investigate the existence of the limiting distributions of{
W (EN )√

N

}
N≥1

and
{
N (EN )√

N

}
N≥1

and  Ck(EN )√
N log

(
N
k

)


N≥1

.

Investigate these distributions.

It is most likely that all three sequences in Problem 14 have limiting distri-
butions. Note that Theorems 2 and 3 tell us that there is a function Γ(k, N),

whose order of magnitude is
√

N log
(
N
k

)
, for which {Ck(EN )/Γ(k, N)}N≥1

has a limiting distribution that is concentrated on a point, as long as k =
k(N) ≤ log N − log log N . Finally, we believe that Problem 12 merits inves-
tigation.

Note added in the revision. Very recently, Noga Alon has obtained an
algebraic construction for a sequence EN with N (EN ) of order at most
N1/3(log N)O(1). He has also observed that Theorem 9.3 from [1] may be
used to prove further lower estimates for minEN

Ck(EN ). We shall come
back to these results in the near future.
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