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Abstract: The complexity function of an infinite word w on a finite alphabet A is

the sequence counting, for each nonnegative n, the number of words of lenght n on the

alphabet A that are factors of the infinite word w. The goal of this work is to estimate

the number of words of lenght n on the alphabet A that are factors of an infinite word w

with a complexity function bounded by a given function f with subexponential growth.
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1 Introduction and notations

In the whole paper we denote by q a fixed integer greater or equal to 2, by A the finite

alphabet A = {0, 1, . . . , q − 1}, by A∗ =
⋃
k≥0

Ak the set of finite words on the alphabet A

and by AN the set of infinite words (or infinite sequences of letters) on the alphabet A.

For any positive integer n we denote by πn the projection from AN to An defined by

πn(w) = w1w2 . . . wn if w = w1w2 . . . wi . . . with wi ∈ A for any positive integer i.

If S is a finite set, we denote by |S| the number of elements of S.

If w ∈ AN we denote by L(w) the set of finite factors of w:

L(w) = {u ∈ A∗, ∃ (u′, u′′) ∈ A∗ × AN, w = u′uu′′}

and, for any non negative integer n, we write Ln(w) = L(w) ∩ An.
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0014/01-5 and 69-0140/03-7).
2Research partially supported by CNPq.
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If x is a real number, we denote

bxc = sup{n ∈ Z, n ≤ x}

and

dxe = inf{n ∈ Z, x ≤ n}.

Definition 1.1. The complexity function of w ∈ AN is defined for any integer n by

pw(n) = |Ln(w)|.

The complexity function gives information about the statistical properties of an in-

finite sequence of letters. In this sense, it constitutes one possible way to measure the

random behaviour of an infinite sequence (see [Que] and [PF], and see [MS1] and [MS2]

for connections between measure of normality and other measures of pseudorandomness).

We have obviously 1 ≤ pw(n) ≤ qn for any positive integer n and it is easy to check

that the sequence (pw(n))n∈N is bounded if and only if w is ultimately periodic. A basic

result from [CH73] shows that if there exists a positive integer n such that pw(n) ≤ n,

then the sequence (pw(n))n∈N is bounded. It follows from this result that non ultimately

periodic sequences w with lowest complexity are such that pw(n) = n+ 1 for any positive

integer n. Such sequences, called sturmian sequences, have been extensively studied since

their introduction by G. A. Hedlund and M. Morse in [HM1] and [HM2] (see [Lot, chapter

2] and [PF]).

It is interesting to notice that if w represents the q-adic expansion (resp. the continued

fraction expansion) of the irrational number ρ ∈]0, 1[, then the combinatorial property of

w to be a sturmian sequence implies the arithmetic property for ρ to be a transcendental

number (see [FM] (resp. [ADQZ]) and see [AB2] (resp. [AB1]) for a generalization to the

case where w has a sublinear complexity).

It is easy to prove the following lemma:

Lemma 1.2. For any w ∈ AN and for any (n, n′) ∈ N2 we have Ln+n′(w) ⊂ Ln(w)Ln′(w)

and so pw(n+ n′) ≤ pw(n)pw(n′).

Consequence 1: It results from Lemma 1.2 that for any w ∈ AN, the sequence(
1
n

logq pw(n)
)
n≥1

converges. We denote E(w) = lim
n→∞

1
n

logq pw(n).
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It can be shown (see for exemple [Kůr]) that E(w) log q is the topological entropy

of the symbolic dynamical system (X(w), T ) where T is the one-sided shift on AN and

X = orbT (w) is the closure of the orbit of w under the action of T in AN (AN is equipped

with the product topology of the discrete topology on A, i.e. the topology induced for

example by the distance d(w,w′) = exp(−min{n ∈ N|wn 6= w′n})).

Consequence 2: Another easy consequence of Lemma 1.2 is that if there exists an integer

n0 such that pw(n0) < qn0 , then pw(n) = o(qn)

This simple remark shows that there are necessary conditions to verify for a non

decreasing sequence of integers (p(n))n∈N to be the complexity function of some w ∈ AN

(see for instance [Fer]). But the characterization of all complexity functions (i.e. necessary

and sufficient conditions for a non decreasing sequence of integers (p(n))n∈N to be the

complexity function of some w ∈ AN) remains an open problem.

Nethertheless, let us mention that J. Cassaigne gave a complete answer to this question

in the special case where p is linear ([Cas2]) and that some partial results concerning the

case where p is sublinear can be found in [Ale] and [Cas1].

If we weaken the question by asking only which are the possible orders of magni-

tude for complexity functions, the problem remains still open, but it follows from an

unpublished result due to J. Goyon [Goy] that for any k ≥ 1 and any (α1, α2, · · · , αk)
in (1,+∞) x Rk−1, there exists w ∈ AN such that pw(n) has order of magnitude

nα1(log n)α2 · · · (log · · · log n)αk (see also [Cas2] for the case 1 < α1 < 2).

There are many references concerning the construction of infinite sequences w with low

complexity, i.e. such that pw(n) = O(nk) for some k ≥ 1 ( see [All] or [Fer] for a survey

concerning these constructions). But, as it is pointed in [Cas3], “not many examples

are known which have intermediate complexity, i.e. for which E(w) = 0 but log pw(n)
logn

is

unbounded”. In [Cas3] J. Cassaigne constructed a large family of infinite sequences with

intermediate complexity and proved the following result:

Theorem 1.3. Let τ : R+ → R+ be a function such that :

(i) lim
t→+∞

τ(t)
log t

= +∞,

(ii) τ is differentiable, except possibly at 0,

(iii) limt→+∞ τ
′(t)ta = 0 for some a > 0,

(iv) τ ′ is decreasing.
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Then there exists w ∈ {0, 1}N such that log pw(n) = τ(n). Moreover w can be taken to

be uniformly recurrent.

This construction is rich enough to include examples such that

τ(n) = nα (0 < α < 1), τ(n) = (log(n + 1))α (α > 1) or τ(n) = nα+β cos(log(n+1)γ)

(α > 0, |β| < α and γ ∈ R).

In the same spirit, the first step of our work consists (sections 3 and 4), for any given

function f verifying some reasonable conditions, to construct a huge set of infinite words

w such that pw is close to f (proposition 4.8).

2 Results

Definition 2.1. We say that a function f from N to R+ verifies the conditions (C0) if

(i) f(n+ 1) > f(n) ≥ n+ 1 for any n ∈ N,

(ii) ∃ n0 ∈ N, n ≥ n0 ⇒ f(2n) ≤ f(n)2 and f(n+ 1) ≤ f(1)f(n),

(iii) the sequence
(

1
n

logq f(n)
)
n≥1

converges to zero.

Examples 2.2. Let us give two typical examples of functions satisfying the conditions

(C0). In the rest of our paper, we will apply our results to these two examples in order to

help the reader to understand them and to get a precise idea about the order of magnitude

of our estimates.

Example A: For each α ≥ 1, the function f is defined by f(0) = 1, f(n) = n + q − 1 for

1 ≤ n < n0 and f(n) = nα for n ≥ n0, with n0 = sup
(

2, 1
q1/α−1

)
.

Example B: For each 0 < α < 1, the function f is defined by f(0) = 1, f(n) = n+q−1 for

1 ≤ n < n0 and f(n) = qn
α

for n ≥ n0, with n0 = inf{n ∈ N, q(n+1)α− qnα ≥ 1 and qn
α ≥

n+ q}.

Our work concerns the study of infinite sequences w the complexity function of which

is bounded by a given function f verifying the conditions (C0).
More precisely, our goal is to estimate the number of words of length n on the alphabet

A that are factors of an infinite word with a complexity function less than f . The sturmian
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case (f(n) = n + 1) was studied by F. Mignosi in [Mig], who proved an explicit formula

conjectured by S. Dulucq and D. Gouyou-Beauchamps in [DG]: the number of words of

length n on the alphabet {0, 1} that are factors of a sturmian infinite word is exactly

1 +
∑n

i=1(n− i+ 1)Φ(i), where Φ is the Euler function (this is asymptotically equivalent

to n3/π2). This formula can be found also in [KLB], but it seems that the first proof of

this formula appears in an earlier paper by E. Lipatov ([Lip]). A geometric proof of it

is due to J. Berstel and Pocchiola in [BP] and a combinatorial proof was given by A. de

Luca and F. Mignosi in [LM] (see [Lot]). Some partial generalizations concerning the case

f(n) = kn+ 1 (for k ≥ 2) were done by F. Mignosi and L. Zamboni in [MZ]. In the case

of positive entropy (i.e. lim
n→∞

1
n

logq f(n) > 0), some sharp estimates can be obtained by

using a different method. This will be the scope of a future work.

In all this paper f is a function from N to R+ verifying the conditions (C0).
Let us denote W (f) = {w ∈ AN, pw(n) ≤ f(n), ∀n ∈ N} and Ln(f) =

⋃
w∈W (f)

Ln(w).

The aim of sections 3 and 4 is to give upper bounds and lower bounds for |Ln(f)|.
We will exhibit (theorems 3.1 and 4.1) for any given function f satisfying the conditions

(C0) functions ϕ and ψ of approximately the same order of magnitude such that for n big

enough, we have

qψ(n) ≤ |Ln(f)| ≤ qϕ(n).

In particular, these functions ϕ and ψ will satisfy

lim
n→+∞

1

n
ψ(n) = lim

n→+∞

1

n
ϕ(n) = 0.

3 Upper bounds for |Ln(f )|

For any integers k and N we have

LkN(f) =
⋃

w∈W (f)

LkN(w)

⊂
⋃

w∈W (f)

LkN(w) by Lemma 1.2.
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But ⋃
w∈W (f)

LkN(w) =
⋃
w∈AN

|Ln(w)|≤f(n),∀n∈N

LkN(w)

⊂
⋃
w∈AN

|LN (w)|≤f(N)

LkN(w)

⊂
⋃

S⊂AN
|S|≤f(N)

Sk =
⋃

S⊂AN
|S|=f(N)

Sk,

so that

|LkN(f)| ≤
∑
S⊂AN
|S|=f(N)

f(N)k = f(N)k
(

qN

f(N)

)

≤ f(N)kqNf(N).

We will now choose the parameter k in order to optimize this majoration.

Let us suppose that N ≥ N0, where N0 satisfies f(N0) > q and take k = b Nf(N)
logq f(N)

c in

order to obtain that |LkN(f)| ≤ q2Nf(N). It is easy to verify that if f satisfies (C0) then

the sequence
(
b Nf(N)

logq f(N)
c
)
N≥N0

is non decreasing, so the sequence
(
Nb Nf(N)

logq f(N)
c
)
N≥N0

is

strictly increasing.

Let F (N) = Nb Nf(N)
logq f(N)

c for any integer N , and F ∗(n) = min{m ∈ N|F (m) ≥ n}, for

any n ∈ N.

If we still denote by F a (arbitrary) continuous and strictly increasing extension of F

from R+ to R+, it follows that F ∗(n) ≤ F−1(n) + 1 for any n ∈ N.

Given an integer n, let N = F ∗(n). We have F (N − 1) < n ≤ F (N).

If follows from the previous estimate that

|Ln(f)| ≤ |LF (N)(f)|

≤ q2Nf(N)

= qϕ(n)

with

ϕ(n) = 2F ∗(n)f(F ∗(n)). (1)
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As

lim
N→∞

1

N
logq f(N) = 0,

we remark that, for any integer n such that F ∗(n) ≥ n0 + 1, we have

ϕ(n)

n
≤ ϕ(F (N))

F (N − 1)

=
2Nf(N)

F (N − 1)

≤ 2qNf(N − 1)

(N − 1)b (N−1)f(N−1)
logq f(N−1)

c
= O(

logq f(N − 1)

N − 1
) = o(1).

Finaly, we have proved the following theorem:

Theorem 3.1. |Ln(f)| ≤ qϕ(n) where ϕ is defined by (1).

Examples 3.2.

- For f defined in Example A, we have

F (N) = Nb Nα+1

α logqN
c =

Nα+2

α logqN
+O(N),

so that

F−1(n) =

(
α

α + 2

)1/(α+2)

n1/(α+2)(logq n)1/(α+2) +O(n1/(α+2))

and

f(F ∗(n)) =

(
α

α + 2

)α/(α+2)

nα/(α+2)(logq n)α/(α+2) +O(nα/(α+2)(logq n)(α−1)/(α+2))

(since F ∗(n) = F−1(n) +O(1)), so that

ϕ(n) = 2

(
α

α + 2

)(α+1)/(α+2)

n(α+1)/(α+2)(logq n)(α+1)/(α+2)+O(n(α+1)/(α+2)(logq n)α/(α+2)).

- For f defined in Example B, we have

F (N) = NbN1−αqN
αc = N2−αqN

α

+O(N),
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so that

F−1(n) = (logq n)1/α − 2− α
α2

(logq n)
1
α
−1 logq logq n+O

(
(logq n)

1
α
−2(logq logq n)2

)
,

and

f(F ∗(n)) = n(logq n)−(2−α)/α +O(n(logq n)−2/α(logq logq n)2) +O(n(logq n)2−3/α) =

= (1 + o(1))n(logq n)−(2−α)/α

(since F ∗(n) = F−1(n) +O(1)), so that

ϕ(n) =
2n

(logq n)(1−α)/α
+O

(
n(logq logq n)2

(logq n)1/α

)
=

(2 + o(1))n

(logq n)(1−α)/α
.

4 Lower bounds for |Ln(f )|

The main goal of this section is to give lower bounds for |Ln(f)| when f satisfies the

conditions (C0). To do this, we will construct, for any fixed η0 > 0, a large family W of

infinite words w with a complexity function pw close to f and then minorate |
⋃

w∈W
Ln(w)|.

We will end with the following theorem:

Theorem 4.1. For any fixed η0 > 0 there exists an integer N0 such that for any n ≥ N0

we have

|Ln(f)| > exp

((
1

8
− η0

)
n

G−1(4n)
log

n

G−1(4n)

)
,

where G(x) = 2xg(x) and g is a function verifying the conditions (C0) such that for any

integer n ≥ N0

min(G((2 + η0)n log2 n), G((2 + η0)n)2) ≤ f(n).

4.1 Construction of a large family W of infinite words

Let (ak)k≥1 be the sequence of integers defined by a1 = 1, a2 = 3 and for k ≥ 2

ak+1 =

⌈(
2 +

1

log2 ak

)
ak

⌉
and (bk)k≥1 be the sequence of integers defined by bk = ak+1 − 2ak.
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Lemma 4.2. For any k ≥ 3 we have 2k < ak < 2k+1.

Proof. An easy computation shows that a1 = 1, a2 = 3, a3 = 9, a4 = 20, a5 = 43 and

a6 = 90.

As we have ak+1 ≥ 2ak for any k ≥ 1, it follows that ak > 2k for any k ≥ 3.

For the majoration, we can proceed as follow:

For any k ≥ 3 we have ak+1 < 2ak + ak
k2 log2 2

+ 1 so that for any k ≥ 3

ak+1

ak
< 2 +

1

k2 log2 2
+

1

2k
.

It follows that for any k ≥ 5 we have

ak+1/2
k+1

ak/2k
< 1 +

1

2k2 log2 2
+

1

2k+1
< 1 +

3

2k2
<

1− 2
k+2

1− 2
k+1

so that for k ≥ 6 we have

ak+1

2k+1
<

90

64

k∏
i=6

1− 2
i+2

1− 2
i+1

<
90

64

∞∏
i=6

1− 2
i+2

1− 2
i+1

=
90

64
· 7

5
=

63

32
,

proving that ak < 2k+1 for any k ≥ 7.

Remark 4.3. The sequence (ak/2
k)k≥1 is increasing, so that it follows from lemma 4.2

that lim
n→∞

ak/2
k = a, with a ∈]1, 2[.

Remark 4.4. For any k ≥ 1 we have 2ak < ak+1 ≤ 3ak and for any fixed η1 > 0 we can

easily compute explicitely k1 ∈ N such that for any k ≥ k1 we have ak+1 < da2k+1e ≤
(2 + η1)ak.

Let g be a function satisfying conditions (C0) and K0 be a fixed large constant which

will be chosen later (depending on the parameter η0 of the statement of Theorem 4.1).

Let us define the sequence (mk)k≥K0 by mK0 = 2 and, for k ≥ K0,

mk+1 = min(mk
2, dg(da2k+1e)

mk

emk).
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Remark 4.5. The sequence (mk)k≥1 is well defined because we have mk ≥ 2 for any

k ≥ K0.

Lemma 4.6. There exists an integer K1 ≥ K0 such that

mk+1 = dg(da2k+1e)
mk

emk for any k ≥ K1.

Proof. Let us first remark that, if we suppose that mk+1 = mk
2 for any k ≥ K0, then it

would follow from one side that

mk = mK0

2k−K0 = λa2
k+1

for any k ≥ K0,

with λ = 2
1

a2k0+1 > 1, and from the other side that

mk ≤ d
g(da2k+1e)

mk

e for any k ≥ K0,

which would imply all together that

g(da2k+1e) > mk(mk − 1)

≥ 1

2
mk

2 =
1

2
λa2

k+2

>
1

2
λda2

k+1e,

which would contradict the hypothesis lim
n→∞

1
n

logq g(n) = 0.

This prove the existence of an integer K1 such that mK1+1 = dg(da2
K1+1e)

mK1
emK1 , i.e.

such that dg(da2
K1+1e)

mK1
e ≤ mK1 .

It is now easy to prove by induction over k that

dg(da2k+1e)
mk

e ≤ mk for any k ≥ K1.

As for any (x, n) ∈ R×Z the inequality dxe ≤ n is equivalent to the inequality x ≤ n,

it is equivalent to prove that

g(da2k+1e) ≤ mk
2 for any k ≥ K1.
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Indeed, this is true for k = K1 and if we suppose that g(da2k+1e) ≤ mk
2, i.e. that

mk+1 = dg(da2
k+1e)

mk
emk, then we have

g(da2k+2e) ≤ g(2da2k+1e)

≤ (g(2da2k+1e))2 by condition (C0, ii)

≤ (dg(da2k+1e)
mk

emk)
2 = mk+1

2.

The following lemma shows that the sequences (mk)k≥K0 and (g(da2ke))k≥K0 have the

same order of magnitude:

Lemma 4.7. (i) For any integer k ≥ K0 we have mk ≤ 2g(da2ke).

(ii) For any integer k ≥ K1 + 1 we have mk ≥ g(da2ke).

Proof. (i) Let us prove this inequality by induction over k. It is true for k = K0 and, if

we suppose that mk ≤ 2g(da2ke), it follows that

mk+1 ≤ d
g(da2k+1e)

mk

emk

≤ 2g(da2k+1e),

because g(da2k+1e)
mk

≥ g(da2ke)
mk

≥ 1
2

(we recall that if x ≥ 1
2
, then we have dxe ≤ 2x).

(ii) If k ≥ K1, we have

mk+1 = dg(da2k+1e)
mk

emk ≥ g(da2k+1e).

Starting from M(K0) = {0aK0 , 0aK0
−11} we define by induction for each k ≥ K0 a set

M(k) of mk words of length ak as follows:

IfM(k) has been already constructed, we choose for each α ∈M(k) a setX(α) ⊂M(k)

with |X(α)| = mk+1

mk
. Then we construct

M(k + 1) = {α0bkβ, α ∈M(k), β ∈ X(α)}.

We denote by M(k) the union, for all the possible choices of the sets X(α), of the sets

M(k) and by W the set of infinite words w on the alphabet A such that πak(w) ∈ M(k)

for any integer k ≥ K0.
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4.2 Complexity of the elements of W

The goal of this paragraph is to show the following proposition:

Proposition 4.8. For any fixed η0 > 0 there exists an integer n0 such that for any n ≥ n0

we have, for any w ∈ W :

1

2
g((

1

2
− η0)n) < pw(n) < min(G((2 + η0)n log2 n), G((2 + η0)n)2).

Proof. It is easy to bound pw from below:

If ak ≤ n < ak+1, we have

pw(n) ≥ mk by construction

≥ g(da2ke) by Lemma 4.7 ii

≥ g(ak).

It follows from Remark 4.4 that, if n ≥ ak1 we have pw(n) ≥ 1
2
g((1

2
− η1)n).

We have now to give upper bounds for pw.

Lemma 4.9. Let τ be the function defined on the interval [e2,+∞) by τ(x) = x
(log x)2

.

The function τ is strictly increasing and, for any fixed η2 > 0, we can compute explicitely

n2 ∈ N such that for any n ≥ n2 we have

τ−1(n) ≤ (1 + η2)n log2 n. (2)

Proof. The study of the derivative of the function τ shows easily that τ is strictly increas-

ing on the interval [e2,+∞) . The inequality (2) is then equivalent to

n ≤ τ((1 + η2)n log2 n),

that is equivalent to (
1 +

log(1 + η2)

log n
+ 2

log log n

log n

)2

≤ 1 + η2,

which clearly holds for n large enough.
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For any fixed η3 > 0, let us fix η1 and η2 respectively in Remark 4.4 and Lemma 4.9

such that (2 + η1)(1 + η2) ≤ 2 + η3. We denote n3 = max(bk1+1, n2).

To bound pw from above let us consider, for any integer n ≥ n3, k0(n) the smallest

integer such that bk0(n) ≥ n.

Lemma 4.10. For any n ≥ n3, we have da2k0(n)e ≤ (2 + η3)n log2 n.

Proof. By definition of k0(n) we have

bk0(n)−1 < n ≤ bk0(n)

and by definition of (bk)k≥1 we have

τ(ak0(n)−1) ≤ bk0(n)−1 < τ(ak0(n)−1) + 1.

It follows from Lemma 4.9 that

ak0(n)−1 < τ−1(n) ≤ (1 + η2)n log2 n

and from Remark 4.4 that

da2k0(n)e ≤ (2 + η1)ak0(n)−1 < (2 + η3)n log2 n.

Let us now use the fact that every factor of length n ≥ n3 in w must be a factor of

some element of M(k0(n)) preceeded or followed by a sequence of zeros.

This means that for n ≥ n3 we have

pw(n) ≤ (n− 1 + ak0(n))mk0(n) + 1

≤ (n+ ak0(n))mk0(n)

< 2(n+ (2 + η3)n log2 n)g((2 + η3)n log2 n).

If we fix now η4 > 0 such that η4 > η3, there exist an integer n4 ≥ n3 such that for n ≥ n4

we have

pw(n) < G((2 + η4)n log2 n).

13



Let us now give another upper bound for pw that will give a better result when g is

growing very fast.

Every factor of length n in w must be a factor of some element of M(k + 1) (where

ak ≤ n < ak+1) preceded or followed by a sequence of zeros, or a factor of M(k + 1)

followed by br zeros (for some k+ 1 ≤ r ≤ k0(n)) followed by another factor of M(k+ 1).

This gives the estimate valid for n ≥ n3:

pw(n) ≤ (n+ ak+1)mk+1 + (k0(n)− k)nm2
k+1

≤ 4ng(da2k+1e) + 4(k0(n)− k)n · g(da2k+1e)2

≤ 4ng((2 + η1)n) + 4 log2((2 + η3)n log2 n)n · g((2 + η1)n)2.

This shows that there exists an integer n5 ≥ n3 such that for n ≥ n5 we have

pw(n) < G((2 + η1)n)2.

To finish the proof of Proposition 4.8 it is enough, for any fixed η0, to take in the

previous arguments η1 < η0, η4 < η0 and n0 = max(ak1 , n4, n5).

Remark 4.11. The above majoration of k0(n)− k is a simple application of Lemmas 4.2

and 4.10. It is easy to improve it by showing that

k0(n)− k = 2
log log n

log 2
+O(1).

Corollary 4.12. If g verifies the conditions (C0), η0 and n0 are as in the statement of

Proposition 4.8 and K0 satisfies bK0 > n0 then, for any w ∈ W and any n ≥ 1, we have

pw(n) ≤ f(n).

Proof. We have two cases:

i) If n ≤ bK0 , by construction a factor of size n of a word w ∈ W has at most one

letter equal to 1 and all other letters equal to 0, so pw(n) ≤ n+ 1 ≤ f(n).

ii) If n > bK0 , we have k0(n) > K0 and, since bK0 > n0, we have pw(n) < min(G((2 +

η0)n log2 n), G((2 + η0)n)2) ≤ f(n).
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4.3 Minoration of

∣∣∣∣ ⋃
w∈W

Ln(w)

∣∣∣∣
For any k ≥ K0, let

r(k) = dlog2mke. (3)

For every integer n ≥ aK0+r(K0), let k be the unique integer verifying

ak−1+r(k−1) ≤ n < ak+r(k)

and let s defined by

ak+s ≤ n < ak+s+1

(we have r(k − 1)− 1 ≤ s ≤ r(k)− 1).

We will now construct subsets ofW as follows. Let us enumerate the setM(k) obtained

in the construction described in section 4.1 as follows: M(k) = {α1(k), α2(k), . . . , αmk(k)}.
We can decide that for k′ ≥ k we have αj+1(k

′) ∈ X(αj(k
′)) for each 1 ≤ j ≤ mk′ (we put

αmk′+1 := α1) and

M(k′ + 1) = {α1(k
′ + 1), α2(k

′ + 1), . . . , αmk′+1
(k′ + 1)}

where we enumerate the elements of M(k′ + 1) in such a way that

α1(k
′ + 1) = α1(k

′)0bk′α2(k
′)

α2(k
′ + 1) = α3(k

′)0bk′α4(k
′)

...

αbmk′+1

2
c(k
′ + 1) = αmk′−1(k

′)0bk′αmk′ (k
′) for mk′ even

= αmk′ (k
′)0bk′α1(k

′) for mk′ odd.

This construction gives

α1(k + s) = α1(k)0bkα2(k)0bk+1 . . . 0bk+1α2s−1(k)0bkα2s(k)

where α1(k), α2(k), . . . , α2s(k) appear in this order as factors of length ak.

15



Lemma 4.13. i) For every integer n ≥ aK0+r(K0) we have n < 4ak2
s < 4akmk.

ii) For every integer n ≥ max(ak1+r(k1), aK1+1+r(K1+1)) we have

n >
1

4
G

(
ak

2 + η1

)
.

Proof. i) We have

n < ak+s+1 by construction,

< 2k+s+2 by Lemma 4.2,

< 2s+2ak by Lemma 4.2.

The second inequality results from the fact that

2s ≤ 2r(k)−1 = 2dlog2mke−1 < mk.

ii) We have, for any k ≥ K1 + 2,

n ≥ ak−1+r(k−1) from the definition of k,

> 2k−1+r(k−1) by Lemma 4.2,

>
1

2
ak−12

r(k−1) by Lemma 4.2,

≥ 1

2
ak−1mk−1 from the definition of r,

≥ 1

2
ak−1g(da2k−1e) by Lemma 4.7 ii,

≥ 1

2
ak−1g(ak−1).

It follows from Remark 4.4 that if k ≥ max(k1 + 1, K1 + 2), we have

n >
1

2
ak−1g(ak−1) >

1

4
· 2ak

2 + η1

g

(
ak

2 + η1

)
=

1

4
G

(
ak

2 + η1

)
.

We have 2s ≤ 2r(k)−1 < mk and, if we denote by W0 the set of all infinite words

obtained by this construction, we have∣∣∣∣∣ ⋃
w∈W0

Ln(w)

∣∣∣∣∣ ≥ A2s

mk
=

mk!

(mk − 2s)!
.
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For any fixed η5 > 0 there is k5 such that for any k ≥ k5 we have

mk!

(mk − 2s)!
≥ ((mk!)

1/mk)2s ≥ (mk/e)
2s ≥ m

(1−η5)2s

k .

Then, for any k ≥ max(k1 + 1, K1 + 2, k5) we have

mk!

(mk − 2s)!
≥ exp((1− η5)2

s logmk)

> exp

(
(1− η5)

n

4ak
log

n

4ak

)
by Lemma 4.13.i,

> exp

(
1− η5

4(2 + η1)
· n

G−1(4n)
log

n

4(2 + η1)G−1(4n)

)
by Lemma 4.13.ii.

Now for any fixed η0 > 0 and any η1 > 0 fixed as in part 4.2 (in particular η1 < η0), let

us choose η5 such that η5 < 4η0(2 + η1) − η1
2

. Then, we have 1
8
− η0 <

1−η5
4(2+η1)

and we

conclude that there exists an integer N0 = max(ak1+r(k1), aK1+1+r(K1+1), ak5−1+r(k5−1), n0)

such that, for any n ≥ N0 we have∣∣∣∣∣ ⋃
w∈W

Ln(w)

∣∣∣∣∣ ≥
∣∣∣∣∣ ⋃
w∈W0

Ln(w)

∣∣∣∣∣ > exp

(
(
1

8
− η0)

n

G−1(4n)
log

n

G−1(4n)

)
.

Examples 4.14.

- For f defined in Example A, we can take for N ≥ e
2α
α−1

G(N) =
Nα

(2 + η0)α log2αN
,

so that

G−1(4n) =
41/α(2 + η0)

α2
n1/α log2 n+O(n1/α log n log log n).

If we combine this with the result obtained in section 3, we conclude that there are positive

constants c1(α) and c2(α) such that, for n big enough, we have

exp

(
c1(α)

n(α−1)/α

log n

)
< |Ln(f)| < exp

(
c2(α)n(α+1)/(α+2)(log n)(α+1)/(α+2)

)
(indeed we can take any c1(α) < 4−1/αα(α− 1)/16 and any c2(α) > 2(log q)

1
α+2 ( α

α+2
)
α+1
α+2 ).
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- For f defined in Example B, we can take for N ≥ (2 + η0)(
2

α log q
)1/α

G(N) = q
Nα

2(2+η0)α

so that

G−1(4n) =

(
2

log q

)1/α

(2 + η0)(log n)1/α +O((log n)(1−α)/α).

Combining this with the result obtained in section 3, we conclude that there are constants

c1(α) and c2(α), 0 < c1(α) < c2(α) such that, for n big enough, we have

exp

(
c1(α)

n

(log n)(1−α)/α

)
< |Ln(f)| < exp

(
c2(α)

n

(log n)(1−α)/α

)
(indeed we can take any c1(α) < 1

16
( log q

2
)

1
α and any c2(α) > 2(log q)

1
α ).

4.4 An open question

Our method does not work for sequences with sublinear complexity. A natural open

problem is to give sharp estimates for |Ln(f)| when f is a linear function.

In order to state more precise questions, let us give some definitions. Let g0(x) =

x, g1(x) = x + 1, and, for k > 0 and x > 0 large, gk+1(x) = exp(gk(log(x)) and g−k(x) =

g−1
k (x). We say that an increasing function f from R+ to R+ is morally polynomial if

there is k ≥ 0 such that g−k(x) ≤ f(x) ≤ gk(f(x)) for every x sufficiently large, and that

f is morally exponential if log f is morally polynomial. We have the following questions:

i) Is it true that `(n) = |Ln(f)| is morally polynomial for any linear function f ?

ii) Does there exist some A > 0 such that `(n) = |Ln(f)| is morally exponential for

f(n) = An ?

Clearly we cannot have positive answers to both of these questions. On the other

hand, it is not clear whether we will have a positive answer to one of them, since there are

functions which are neither morally polynomial nor morally exponential, (e.g. increasing

functions f such that f ◦ f = exp). However, any logarithmico-exponential function f (in

the sense of Hardy) satisfying x ≤ f(x) ≤ qx for every large x is morally polynomial or

morally exponential (see section 4.1 of [Har]).
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