INTEGRABILITY AND LYAPUNOV EXponents

ANDY HAMMERLINGL

Abstract. A smooth distribution, invariant under a dynamical system, integrates to give an invariant foliation, unless certain resonance conditions are present.

1. Introduction

The analysis of smooth dynamical systems is aided greatly by the existence of foliations invariant under the action of the system. In this paper, we show that smooth, invariant distributions on the tangent space typically integrate to give invariant foliations, and that special resonance conditions must be present to obstruct this.

Theorem 1.1. Let M be a compact Riemannian manifold, $f : M \to M$ a C^1 diffeomorphism which preserves a measure equivalent to Lebesgue, and $TM = E \oplus F$ a C^1, Tf-invariant splitting. Suppose E is not integrable. Then at some point on M, there is a Lyapunov exponent μ of order two of E and a Lyapunov exponent λ of order one of F such that $\mu = \lambda$.

In brief, a vector $v \in TM$ is a Lyapunov vector if the limit

$$\lim_{|n| \to \infty} \frac{1}{n} \log \|Tf^n v\|$$

exists; this limit is the Lyapunov exponent of order one corresponding to the vector. A point $x \in M$ is Lyapunov regular if (among other properties) its tangent space $T_x M$ has a basis of Lyapunov vectors. The theorem of Oseledets says that the set of Lyapunov regular points is of full probability; that is, with respect to any f-invariant measure, almost every point is Lyapunov regular. A light introduction to the theory is given in [13] and proofs of Oseledets theorem are given in [12] and [11].

At a Lyapunov regular point, a Lyapunov exponent of order k is the sum of k exponents of order one corresponding to k linearly independent vectors. If TM has a Tf-invariant splitting, then at regular points, a basis of Lyapunov vectors can be chosen that respects this splitting. Therefore, we may speak of Lyapunov exponents associated to the bundles E and F above.

Theorem 1.1 states that if an invariant, C^1 splitting $TM = E \oplus F$ fails to be integrable, it must be due to a special type of “Lyapunov resonance” between E and F.

\textbf{Date:} April 21, 2010.

1991 Mathematics Subject Classification. Primary: 37D10; Secondary: 37D20, 37D30.

\textbf{Key words and phrases.} Integrability, Lyapunov exponents.
If X and Y are C^1 vector fields on a manifold, then there is a unique continuous vector field $[X,Y]$ such that

$$[X,Y](g) = X(Y(g)) - Y(X(g))$$

for every C^∞ function g. A C^1 distribution $E \subset TM$ is involutive if for any C^1 vector fields X, Y taking values in E, the bracket $[X,Y]$ also lies in E. By Frobenius’ theorem, a C^1 distribution is integrable if and only if it is involutive. Theorem 1.1 then follows from a local result of involutivity at a Lyapunov regular point:

Theorem 1.2. Let M be a compact Riemannian manifold, $f : M \to M$ a C^1 diffeomorphism, and $TM = E \oplus F$ a C^1, Tf-invariant splitting. Suppose E is not involutive at a Lyapunov regular point $p \in M$. Then at p there is a Lyapunov exponent μ of order two of E and a Lyapunov exponent λ of order one of F such that $\mu = \lambda$.

To prove the main theorem from Theorem 1.2, note that involutivity is a closed condition. If E is not integrable, it fails to be involutive on an open subset of M. Then apply Oseledets theorem to find a Lyapunov regular point in that subset.

Remark. As can be observed from the last paragraph, the condition in Theorem 1.1 that the diffeomorphism preserve a smooth measure could be replaced with the weaker assumption that the Lyapunov regular points are dense.

Remark. For the splitting $TM = E \oplus F$ we will only use that E is C^1 and that F is continuous. Frobenius’ theorem and the notion of involutivity can even be extended to the case where the distribution is Lipschitz [15, 14]. Using these techniques, we could prove Theorem 1.1 in the case where E is merely Lipschitz. This would, however, introduce annoying technicalities into the proof, so for simplicity, we assume C^1 smoothness throughout.

Section 2 discusses how Theorem 1.1 relates to other integrability results in the study of dynamical systems and gives examples of its application. Section 3 details the proof of Theorem 1.2. Section 4 gives the statement and proof of a slightly more technical result that establishes integrability without relying on a smooth invariant measure or Lyapunov regularity.

2. Discussion and Examples

To understand Theorem 1.1, we apply it to examples of hyperbolic and partially hyperbolic systems.

A diffeomorphism f of a compact Riemannian manifold M is partially hyperbolic if there are constants $\lambda < \hat{\gamma} < 1 < \gamma < \mu$ and a Tf-invariant splitting of TM such that for every $x \in M$, the splitting $T_xM = E^u(x) \oplus E^c(x) \oplus E^s(x)$ satisfies

$$\mu \|v\| \leq \|Tfv\| \quad \text{for } v \in E^u(x),$$

$$\hat{\gamma} \|v\| \leq \|Tfv\| \leq \gamma \|v\| \quad \text{for } v \in E^c(x),$$

$$\|Tfv\| \leq \lambda \|v\| \quad \text{for } v \in E^s(x).$$

There are slightly more general definitions of partial hyperbolicity, but we use this formulation for simplicity. See [3] or [10] for a more detailed discussion of these systems.

It is typically required that each of the subbundles be non-empty for the system to be truly called partially hyperbolic. If the center bundle, E^c, is empty, the system
is called *hyperbolic* or *Anosov* [1]. It is possible, by different choices of splitting, for a system to be both hyperbolic and partially hyperbolic. These definitions are robust in that a C^1-small perturbation of a hyperbolic (or partially hyperbolic) system is also hyperbolic (or partially hyperbolic).

In a hyperbolic or partially hyperbolic system, the *stable*, E^s, and *unstable*, E^u, subbundles always integrate to give foliations, and the study of these foliations is critical for understanding the system. The center subbundle is in some cases integrable and in other cases not. The direct sums $E^{cs} = E^c \oplus E^s$ and $E^{cu} = E^c \oplus E^u$ are likewise fickle. If the three subbundles, E^c, E^{cs}, and E^{cu}, are uniquely integrable, the system is called *dynamically coherent*. For a C^1 distribution, integrability and unique integrability are equivalent, but for less regular distributions, the distinction is important.

In [5], K. Burns and A. Wilkinson discuss dynamical coherence and present a condition in which it holds.

Theorem 2.1 (Burns-Wilkinson [5]). Suppose f is partially hyperbolic and has a C^2 splitting with constants as in the definition. If $\lambda < \hat{\gamma}^2$, then E^{cu} is uniquely integrable. If $\hat{\gamma}^2 < \mu$, then E^{cs} is uniquely integrable. If both these inequalities hold, the intersection $E^c = E^{cu} \cap E^{cs}$ is integrable as well, and the system is dynamically coherent.

There, C^2 smoothness was chosen for convenience, and the proof readily generalizes to the C^1 case. For a measure-preserving system, Theorem 1.1 is a generalization of Theorem 2.1, since the inequalities guarantee that a Lyapunov resonance as described in Theorem 1.1 cannot occur. In fact taking $\hat{\gamma}$ and γ to the power two in Theorem 2.1 relates directly to the use of a Lyapunov exponent of order two. In essence, the result of Burns and Wilkinson shows that integrability is achieved under certain inequalities; the results in this paper show that for integrability to fail, certain *equalities* must hold.

Examples of non-dynamically coherent systems with smooth splittings can be constructed from Lie group automorphisms [16, 17]. These satisfy resonance conditions as described in Theorem 1.1, where Lyapunov exponents associated to Lie algebra elements X and Y sum to give the Lyapunov exponent associated to $[X, Y]$.

In general, partially hyperbolic splittings are Hölder continuous, instead of C^1 or C^2, and it is an open question whether Theorem 2.1 is true for a general splitting. Since, as we will soon show, Theorem 1.1 is false for C^0 splittings, it is doubtful that any such generalization exists.

Dynamical coherence deals with the integrability of $E^c \oplus E^u$ and $E^c \oplus E^s$, but we can also investigate the integrability of $E^u \oplus E^s$. This is important when trying to establish the ergodicity of a partially hyperbolic system. A partially hyperbolic system is *accessible* if between any two points of the manifold there exists a continuous path which is the concatenation of a finite number of subpaths, each tangent either to E^u or E^s. The system is *center bunched* if

$$\lambda < \hat{\gamma}^{-1} \hat{\gamma}^{-1}$$

Theorem 2.2 (Burns-Wilkinson, [6]). If a measure-preserving, partially hyperbolic C^2 diffeomorphism is accessible and center bunched, it is ergodic.

Many believe the technical assumption of center bunching to be extraneous here (one of the so-called Pugh-Shub conjectures). Because the inequalities for center
bunching look similar to those in Theorem 2.1, one is tempted to think there is a connection between the two concepts. There are, however, examples of non-dynamically coherent, center bunched systems.\footnote{These counterexamples were originally discovered by the author, but first published in [5].}

In contrast to center bunching, the theorem clearly relies on the condition of accessibility. There are many examples of non-accessible systems which are also non-ergodic. These include diffeomorphisms of the form \(f \times \text{id} : M \times N \to M \times N \) where \(f \) is hyperbolic. For a general system, if \(E^u \oplus E^s \) is integrable, the system cannot be accessible, since any path piecewise tangent to \(E^u \) or \(E^s \) must be confined to one leaf of the foliation.

F. Rodriguez Hertz, M. A. Rodriguez Hertz, and R. Ures have shown that in the space of conservative, partially hyperbolic systems with one-dimensional center, accessibility holds on an open and dense set, and consequently that ergodicity is a generic condition [9]. In fact, for any center dimension, the subset of systems where \(E^u \oplus E^s \) fails to be integrable is \(C^1 \)-open and \(C^r \)-dense \((r \geq 1)\). This subset is also open and dense when we take the surrounding space to include all partially hyperbolic systems instead of just the conservative ones [4].

This abundance of non-integrability differs sharply from the special case of partially hyperbolic systems with \(C^1 \) splittings. For instance, consider a linear toral automorphism \(g : \mathbb{T}^3 \to \mathbb{T}^3 \) with eigenvalues \(\lambda^s < 1 < \lambda^c < \lambda^u \). The automorphism given by the matrix
\[
\begin{pmatrix}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{pmatrix}
\]
is such an example. The partially hyperbolic splitting \(T\mathbb{T}^3 = E^u \oplus E^c \oplus E^s \) is found by using the eigenspaces of the linear map. \(E^u \oplus E^s \) is integrable as can be seen directly, but integrability can also be proven from Theorem 1.1, since the Lyapunov exponents are the logarithms of the eigenvalues and
\[
\log(\lambda^s) + \log(\lambda^u) = -\log(\lambda^c) \neq \log(\lambda^c).
\]
Further, any small perturbation of \(g \) will not change the Lyapunov exponents by much, so if the splitting of the perturbation is still \(C^1 \), its stable and unstable subbundles will also be jointly integrable. This behaviour is markedly different from a generic perturbation of the linear system, as generically the splitting is not \(C^1 \) and the stable and unstable directions are not jointly integrable.

Grouping the \(E^c \) and \(E^u \) directions together into a 2-dimensional unstable direction, the toral automorphism \(g \) can be viewed as hyperbolic. Then, the diffeomorphism \(g \times \text{id} : \mathbb{T}^3 \times N \to \mathbb{T}^3 \times N \) is partially hyperbolic for any choice of manifold \(N \). \(g \times \text{id} \) has the Lyapunov exponents of \(g \) as well as a Lyapunov exponent of zero arising from the identity map. No two of these exponents add to any of the others, so for a small perturbation with \(C^1 \) splitting, the stable and unstable directions will remain jointly integrable.

As a final example, consider the toral automorphism \(f : \mathbb{T}^2 \to \mathbb{T}^2 \) given by the matrix
\[
\begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}.
\]
This is Arnold’s so-called “cat map.” Take the direct product \(h = f^3 \times f^4 \times f^5 \) defined on the six-dimensional torus. If the cat map has eigenvalues, say, \(\lambda > 1 \)
and $\lambda^{-1} < 1$, then h has eigenvalues
\[
\lambda^{-5} < \lambda^{-4} < \lambda^{-3} < \lambda^{3} < \lambda^{4} < \lambda^{5}
\]
and the tangent space has a corresponding Th-invariant splitting
\[
TT^6 = E_{-5} \oplus E_{-4} \oplus E_{-3} \oplus E_{3} \oplus E_{4} \oplus E_{5}
\]
into one-dimensional subbundles. This splitting is robust under perturbations of the system [10]. Note that no two eigenvalues have a product which is another eigenvalue; equivalently, no two Lyapunov exponents sum to give another. Therefore, in any perturbation where the splitting is still C^1, any direct sum of any of the subbundles will be integrable. For instance, $E_{-4} \oplus E_{3} \oplus E_{5}$ will remain integrable for a perturbation with C^1 splitting.

In this section, the author has been sloppy about restricting discussion to measure-preserving diffeomorphisms, as required by the conditions of Theorem 1.1. However, the results in Section 4 will show that this assumption is not necessary for establishing integrability in the above examples. Also, perturbations of linear systems were considered for convenience, but any system, so long as it is has similar Lyapunov exponents, will enjoy the same integrability results.

We give two examples of general conditions that imply integrability.

Corollary 2.3. Suppose $f : M \to M$ is a conservative, partially hyperbolic diffeomorphism with C^1 splitting. If all of the central Lyapunov exponents are zero then f is dynamically coherent.

To prove this, note that the stable and unstable Lyapunov exponents are all non-zero. The next corollary was suggested by F. Rodriguez-Hertz.

Corollary 2.4. Suppose $f : M \to M$ is a partially hyperbolic, four-dimensional symplectomorphism with C^1 splitting and two-dimensional center. Then f is dynamically coherent. Moreover, if the central Lyapunov exponents are non-zero, then E^u and E^s are jointly integrable.

Proof. As a symplectomorphism, f preserves a smooth volume form. At any Lyapunov regular point, the Lyapunov exponents are of the form $-\mu < -\lambda \leq 0 \leq \lambda < \mu$ due to the symplectic structure. Then $-\lambda + \lambda = 0 \neq \pm \mu$, so the center is integrable. If $\lambda \neq 0$ then $-\mu + \mu = 0 \neq \pm \lambda$ and so $E^u \oplus E^s$ is integrable. \(\square\)

All of the examples in this section serve to show that in the case of C^1 subbundles, it is entirely reasonable to expect integrability. This highlights how differently smooth subbundles behave compared to the merely Hölder continuous subbundles that generically occur.

In dynamical systems that arise in the study of mathematics or the sciences, we may be able to establish the existence of a smooth splitting. Theorem 1.1 then gives us a way to automatically deduce the existence of invariant manifolds when it may be intractable to do so directly. Finally, as the theorem deals only with Lyapunov exponents, it applies just as readily to the non-uniform generalizations of the notions of hyperbolicity and partial hyperbolicity.

In related results, X. Cabré, E. Fontich, and R. de la Llave have shown the existence of certain invariant manifolds through a fixed point on a Banach manifold in the absence of special resonance conditions somewhat similar to those in Theorem 1.1 [7]. L. Barreira and C. Valls have shown center integrability for a non-uniformly
partially hyperbolic system with Lipschitz splitting under certain inequalities for both the splitting and the Lipschitz constant [2].

3. Proof of Theorem 1.2

As noted in the introduction, one can define the bracket \([X, Y]\) of \(C^1\) vector fields \(X\) and \(Y\). Many of the identities for smooth vector fields also hold in the \(C^1\) case. The bracket is bilinear and anti-symmetric, and for \(C^1\) functions \(a, b : M \to \mathbb{R}\), the equation

\[
[aX, bY] = aX(bY) - bY(aX) + a b [X, Y]
\]

is satisfied. If \(\eta\) is a \(C^1\) differential 1-form, we have the so-called invariant formula

\[
d\eta(X, Y) = X\eta(Y) - Y\eta(X) - \eta([X, Y]).
\]

Finally, if \(f\) is a \(C^1\) diffeomorphism on \(M\), then its derivative \(Tf\) acts on vector fields in a pointwise manner, and

\[
Tf[X, Y] = [TfX, TfY].
\]

In a coordinate chart, the bracket of \(X = \sum_i a_i \partial / \partial x_i\) and \(Y = \sum_i b_i \partial / \partial x_i\) is given by

\[
[X, Y] = \sum_{i,j} \left(a_i \frac{\partial b_j}{\partial x_i} - b_i \frac{\partial a_j}{\partial x_i} \right) \frac{\partial}{\partial x_j},
\]

and the identities above can be proven, quite tediously, by writing everything out in terms of coordinates.

To prove Theorem 1.2, we first establish an elementary lemma on brackets of vector fields independent of any dynamical system acting on \(M\).

Lemma 3.1. Let \(M\) be a manifold, with \(C^1\) splitting \(TM = E \oplus F\). Suppose \(E\) is not involutive at \(p \in M\). Then for any basis \(\{e_1, \ldots, e_k\}\) of \(E_p \subset T_pM\), there are vector fields \(X_i, X_j\) lying in \(E\) such that \(X_i(p) = e_i\) and \(X_j(p) = e_j\) for some \(1 \leq i < j \leq k\) and

\[
0 \neq [X_i, X_j](p) \in F_p.
\]

Remark. In this lemma and its proof, we use \(X(p)\) to denote the value of a vector field at a point on the manifold. This is due to the subscripts on \(X\) and \(X_i\). Later in the paper, we switch to the more compact notation \(X_p\).

Proof. Since this lemma only involves vector fields in a neighbourhood of \(p\), we restrict ourselves to a coordinate chart, and assume, without loss of generality, that \(M = \mathbb{R}^n\), \(p = 0\), and that at the origin, the distributions \(E\) and \(F\) align with the axes. That is, \(E_p = E_0 = \text{span}\{\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_k}\}\), where \(e_i = \frac{\partial}{\partial x_i}\) and \(F_p = F_0 = \text{span}\{\frac{\partial}{\partial x_{k+1}}, \ldots, \frac{\partial}{\partial x_n}\}\).

In a neighbourhood \(U\) of the origin, define \(Z_i : U \to F_0\) and \(X_i(x) = \frac{\partial}{\partial x_i} + Z_i(x)\) for \(i = 1, \ldots, k\) such that

\[
E_x = \text{span}\{X_1(x), \ldots, X_k(x)\}
\]

for \(x \in U\). To clarify, \(Z_i(x)\) is in \(F_0\) instead of \(F_x\) and so the vector fields could be written as

\[
Z_i(x) = z_{i,k+1}(x) \frac{\partial}{\partial x_{k+1}} + \cdots + z_{i,n}(x) \frac{\partial}{\partial x_n}
\]

where the \(z_{i,\ell}\) are \(C^1\) functions \(U \to \mathbb{R}\).
For \(1 \leq i, j \leq k\),
\[
[X_i, X_j] = \left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} + Z_i, \frac{\partial}{\partial x_j} + Z_j \right] \\
= \left[\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j} \right] + \left[\frac{\partial}{\partial x_i}, Z_j \right] + \left[Z_i, \frac{\partial}{\partial x_j} \right] + \left[Z_i, Z_j \right].
\]
Here the first bracket is zero, and since \(Z_i\) and \(Z_j\) are in \(F_0\) for all points in \(U\), it can be verified from (4) that the remaining three brackets are also in \(F_0\). Therefore, \([X_i, X_j](p) \in F_p\). To prove the lemma, we assume that \([X_i, X_j](p) = 0\) for all \(1 \leq i, j \leq k\) and show that \(E\) is involutive at \(p\).

If \(X\) and \(Y\) are arbitrary \(C^1\) vector fields tangent to \(E\), then
\[
X = \sum_{i=1}^{k} a_i X_i \quad \text{and} \quad Y = \sum_{j=1}^{k} b_j X_j
\]
for \(C^1\) functions \(a_i, b_j : U \to \mathbb{R}\), and by (1),
\[
[X, Y] = \sum_{i,j} [a_i X_i, b_j X_j] \\
= \sum_{i,j} a_i X_i(b_j) X_j - \sum_{i,j} b_j X_j(a_i) X_i + \sum_{i,j} a_i b_j [X_i, X_j].
\]
The first two summations are linear combinations of the \(X_i\) and so lie in \(E\), while in the third summation, every term is zero at the point \(p\) by assumption. Consequently, \([X, Y](p)\) is in \(E_p\) showing that, at that point, the distribution is involutive.

We now prove Theorem 1.2.

Proof. Assume that \(E\) is not involutive at \(p \in M\) and that \(p\) is Lyapunov regular. Then \(E_p \subset T_p M\) can be decomposed as a sum of Lyapunov spaces. Choose a basis of \(E_p\) consisting of vectors in these Lyapunov spaces, and apply the lemma to get vector fields \(X\) and \(Y\) tangent to \(E\) such that \(X_p\) and \(Y_p\) are Lyapunov vectors of \(E\) and \(0 \neq [X, Y](p) \in F_p\).

Let
\[
\mu_1 = \lim_{|n| \to \infty} \frac{1}{n} \log \|Tf^n X_p\|
\]
and
\[
\mu_2 = \lim_{|n| \to \infty} \frac{1}{n} \log \|Tf^n Y_p\|.
\]
If \(V\) is an inner product space with orthonormal basis \(\{e_1, \ldots, e_k\}\) then the second exterior power, \(\Lambda^2(V)\), is an inner product space with orthonormal basis \(\{e_i \wedge e_j : 1 \leq i < j \leq k\}\).

In our case, \(X_p \wedge Y_p \in \Lambda^2(T_p M)\) and
\[
\mu = \lim_{|n| \to \infty} \frac{1}{n} \log \|Tf^n X_p \wedge Tf^n Y_p\|
\]
exists and is a Lyapunov exponent of order two. In fact, \(\mu = \mu_1 + \mu_2\).

\(F_p\) may also be decomposed into Lyapunov spaces, but \([X, Y]p\) might not lie in one of these spaces. By decomposing \([X, Y]_p\) into components in the Lyapunov spaces of \(F_p\), we can establish the limits
\[
\lambda^+ = \lim_{n \to +\infty} \frac{1}{n} \log \|Tf^n [X, Y]_p\|
\]
and

$$\lambda^- = \lim_{n \to \infty} \frac{1}{n} \log \|T^f[X, Y]_p\|$$

where λ^+, λ^- are Lyapunov exponents and $\lambda^- \leq \lambda^+$.

Now, to compare μ to λ^+ and λ^-, we adapt the proof of Theorem 2.1 as given in [8]. Let q be in $\omega(p)$, the omega limit set of p, and take $n_j \to +\infty$ such that $f^{n_j}(p) \to q$. Define

$$v_j = \frac{T^{n_j}f[X, Y]_p}{\|T^{n_j}f[X, Y]_p\|}$$

and assume $v_j \to v$ for some $v \in T_qM$ by replacing n_j with another subsequence. Because F is f-invariant and closed, this limit vector v also lies in F.

In particular, v is a non-zero vector lying outside of E. Let η be a 1-form defined in a neighbourhood of q such that $E \subset \ker \eta$ when restricted to this neighbourhood and $\eta(v) \neq 0$.

For large j, by identities (2) and (3),

$$d\eta(T^{n_j}fX, T^{n_j}fY) = (T^{n_j}fX)(T^{n_j}fY) - (T^{n_j}fY)(T^{n_j}fX) - \eta(T^{n_j}f[X, Y]).$$

Since $T^{n_j}fX$ and $T^{n_j}fY$ are in $E \subset \ker \eta$, the first two terms on the right hand side are zero, so

$$|d\eta(T^{n_j}fX, T^{n_j}fY)| = |\eta(T^{n_j}f[X, Y])|. \tag{5}$$

Now,

$$\lim_{j \to \infty} \frac{1}{n_j} \log |\eta(T^{n_j}f[X, Y]_p)| = \lim_{j \to \infty} \frac{1}{n_j} \log (\|T^{n_j}f[X, Y]_p\| \cdot |\eta(v_j)|)$$

$$= \lim_{j \to \infty} \frac{1}{n_j} \log \|T^{n_j}f[X, Y]_p\| + \lim_{j \to \infty} \frac{1}{n_j} \log |\eta(v_j)|$$

$$= \lambda^+$$

since $\eta(v_j) \to \eta(v) \neq 0$.

As a 2-form, $d\eta_x : T_xM \times T_xM \to \mathbb{R}$ descends to the quotient space, $d\eta_x : \Lambda^2(T_qM) \to \mathbb{R}$ where

$$d\eta(u_1 \wedge u_2) = d\eta(u_1, u_2).$$

Define

$$w_j = \frac{T^{n_j}fX_p \wedge T^{n_j}fY_p}{\|T^{n_j}fX_p \wedge T^{n_j}fY_p\|}.$$

Then,

$$\lim_{j \to \infty} \frac{1}{n_j} \log |d\eta(T^{n_j}fX_p \wedge T^{n_j}fY_p)| = \lim_{j \to \infty} \frac{1}{n_j} \log (\|T^{n_j}fX_p \wedge T^{n_j}fY_p\| \cdot |d\eta(w_j)|)$$

$$= \mu + \lim_{j \to \infty} \frac{1}{n_j} \log |d\eta(w_j)|.$$

It would be seemly if we could deduce from this that $\lambda^+ = \mu$. However, it is possible that $d\eta(w_j) \to 0$ so that $\log |d\eta(w_j)| \to -\infty$. Since $d\eta$ is a continuous 2-form, we do know that $\log |d\eta(w_j)|$ is bounded above, so

$$\lim_{j \to \infty} \frac{1}{n_j} \log |d\eta(w_j)| \leq 0$$

and from (5) it follows that $\lambda^+ \leq \mu$.
In a similar manner, we can construct a subsequence \(n_j \to -\infty \) and deduce that \(\mu \leq \lambda^- \). Then
\[
\mu \leq \lambda^- \leq \lambda^+ \leq \mu,
\]
so the three exponents are equal and the theorem is proved. \(\square \)

4. Integrability without Lyapunov regularity

If the system does not satisfy Lyapunov regularity on a dense set, a similar result still holds, but the formulation is more technical.

Theorem 4.1. Suppose \(f : M \to M \) is a \(C^1 \) diffeomorphism on a compact, Riemannian manifold, and the tangent bundle has a \(C^1 \), \(Tf \)-invariant splitting
\[
TM = \bigoplus_{i=1}^{r} E_i \oplus \bigoplus_{\ell=1}^{s} F_{\ell}
\]
with positive constants \(a_i, b_i \) for \(i \in \{1, \ldots, r\} \) and \(c_\ell, d_\ell \) for \(\ell \in \{1, \ldots, s\} \) such that
\[
a_i \|v\| \leq \|Tfv\| \leq b_i \|v\| \quad \text{for } v \in E_i
\]
and
\[
c_\ell \|v\| \leq \|Tfv\| \leq d_\ell \|v\| \quad \text{for } v \in F_\ell.
\]
Suppose \(E \) is not involutive. Then, there are \(i, j \in \{1, \ldots, r\} \) and \(\ell \in \{1, \ldots, s\} \) such that the intervals \([a_i a_j, b_i b_j]\) and \([c_\ell, d_\ell]\) intersect. Moreover, if \(E_i \) is one-dimensional, then \(i \neq j \).

Remark. We can obtain Theorem 2.1 as a special case of this result. To show the center is integrable, set
\[
E = E_1 = E^c, \quad F = F_1 \oplus F_2 = E^u \oplus E^s
\]
and
\[
[a_1, b_1] = [\gamma, \gamma], \quad [c_1, d_1] = [\mu, N], \quad \text{and} \quad [c_2, d_2] = [-N, \lambda],
\]
where \(N \) is sufficiently large. Then, the inequalities of Theorem 2.1 guarantee that \([a_1 a_j, b_i b_j]\) does not intersect the other intervals.

Proof of Theorem 4.1. Without loss of generality, assume the intervals \([c_\ell, d_\ell]\) are disjoint. If, say \([c_1, d_1]\) and \([c_2, d_2]\) intersected, we could replace \(F_1 \) and \(F_2 \) by \(F_{12} = F_1 \oplus F_2 \) and associate to it the interval
\[
[c_{12}, d_{12}] = [\min(c_1, c_2), \max(d_1, d_2)].
\]
If an interval \([a_i a_j, b_i b_j]\) intersects this new interval, it must do so by intersecting one of the original intervals. By repeating this joining of subbundles, reduce to the case where all of the \([c_\ell, d_\ell]\) are disjoint.

Suppose \(E \) is not involutive at a point \(p \in M \). Then, by Lemma 3.1, there are \(X \) and \(Y \) defined in a neighbourhood of \(p \) such that \(X \) and \(Y \) are contained in \(E \), \(X_p \in E_i(p) \) and \(Y_p \in E_j(p) \) for indices \(i, j \), and \(0 \neq [X, Y]_p \in F_p \). Moreover, if \(E_i \) is one-dimensional, then \(i \neq j \).

Since \(X_p \) and \(Y_p \) are not necessarily Lyapunov vectors, we need to restrict to a subsequence in order to continue the proof. Let \(u = [X, Y]_p \in T_p M \).
Lemma 4.2. There is a bi-infinite subsequence \(\{n_k\}_{k \in \mathbb{Z}} \) such that
\[
\lim_{k \to -\infty} n_k = -\infty \quad \text{and} \quad \lim_{k \to +\infty} n_k = +\infty,
\]
the limits
\[
\lambda^+ = \lim_{k \to +\infty} \frac{1}{n_k} \log \|T f^{n_k} u\|, \quad \text{and} \quad \lambda^- = \lim_{k \to -\infty} \frac{1}{n_k} \log \|T f^{n_k} u\|
\]
converge, and either there is \(\ell \in \{1, \ldots, s\} \) such that
\[
e^{\lambda^-}, e^{\lambda^+} \in [c_\ell, d_\ell],
\]
or \(\ell_1, \ell_2 \in \{1, \ldots, s\} \) such that
\[
e^{\lambda^-} < e^{\lambda^+} \leq d_{\ell_1} < c_{\ell_2} \leq e^{\lambda^+} \leq d_{\ell_2}.
\]

Proof. Decompose \(u \in F(p) \) into components \(u = \sum_{i=1}^s u_i \) where \(u_i \in F_i(p) \). Then, there are indices \(i^- \) and \(i^+ \) where the components \(u_i^- \) and \(u_i^+ \) are each non-zero, and such that for all other indices \(i \), either \(u_i = 0 \) or
\[
d_{i^-} < c_i < d_i < c_i^+.
\]
Colloquially, as \(n \to +\infty \), \(T f^n u^+ \) is the fastest growing component of \(T f^n u \) (or the slowest shrinking component if \(\|T f^n u\| \to 0 \)). \(T f^n u^- \) is the slowest growing (or fastest shrinking) component of the decomposition.

By looking at the growth rates, one sees that
\[
\lim_{n \to +\infty} \frac{\|T f^n u^-\|}{\|T f^n u\|} = 1 \quad \text{and} \quad \lim_{n \to -\infty} \frac{\|T f^n u^+\|}{\|T f^n u\|} = 1.
\]

Take a bi-infinite subsequence \(\{n_k\} \) of the integers such that the limits
\[
\lim_{k \to -\infty} \frac{1}{n_k} \log \|T f^{n_k} u\| = \lim_{k \to +\infty} \frac{1}{n_k} \log \|T f^{n_k} u^+\|
\]
and
\[
\lim_{k \to +\infty} \frac{1}{n_k} \log \|T f^{n_k} u\| = \lim_{k \to +\infty} \frac{1}{n_k} \log \|T f^{n_k} u^-\|
\]
converge. Since \(T f^{n_k} u_{i^\pm} \in F_{i^\pm} \) for all \(n \), the two limits are in the corresponding intervals \([\log c_{i^\pm}, \log d_{i^\pm}]\). If the indices are equal, then (6) holds with \(\ell = i^- = i^+ \). Otherwise, (7) holds with \(\ell_1 = i^- \) and \(\ell_2 = i^+ \). This finishes the proof of the lemma. \(\square \)

For now, just consider the tail of the bi-infinite sequence \(\{n_k\} \) which tends to positive infinity. Further restricting the subsequence, we may assume that \(f^{n_k}(p) \) converges to a point \(q \in M \), that
\[
\frac{T f^{n_k} u}{\|T f^{n_k} u\|} = \frac{T f^{n_k}[X, Y]|_p}{\|T f^{n_k}[X, Y]|_p\|
\]
converges to a vector \(v \in F_q \), and that the limits
\[
\mu_1 = \lim_{k \to +\infty} \frac{1}{n_k} \log \|T f^{n_k} X_p\|, \\
\mu_2 = \lim_{k \to +\infty} \frac{1}{n_k} \log \|T f^{n_k} Y_p\|, \quad \text{and} \quad \\
\mu = \lim_{k \to +\infty} \frac{1}{n_k} \log \|T f^{n_k} X_p \wedge T f^{n_k} Y_p\|
\]
exist. Note that $\mu \leq \mu_1 + \mu_2$ and this inequality may be strict if the angle between $T^f X_k$ and $T^f X_{k'}$ tends to zero.

Define a 1-form η in a neighbourhood of q such that $E \subset \ker \eta$ and $\eta(w) \neq 0$. Then, using equation (5) and the same analysis as in the proof of Theorem 1.2, $\lambda^+ \leq \mu$ and therefore

$$\lambda^+ \leq \mu \leq \mu_1 + \mu_2 \leq \log b_i + \log b_j \Rightarrow e^{\lambda^+} \leq b_i b_j$$

Looking at n_k as $k \to -\infty$ and restricting to an appropriate subsequence, one also sees that $a_i a_j \leq e^{\lambda^-}$.

Lemma 4.2 shows that $[a_i a_j, b_i b_j]$ intersects one of the intervals $[c_\ell, d_\ell]$, as follows. If (6) holds, either $e^{\lambda^-} \leq e^{\lambda^+}$, in which case

$$\emptyset \neq [e^{\lambda^-}, e^{\lambda^+}] \subset [a_i a_j, b_i b_j] \cap [c_\ell, d_\ell]$$

or $e^{\lambda^+} < e^{\lambda^-}$, in which case

$$[a_i a_j, b_i b_j] \cap [e^{\lambda^-}, e^{\lambda^+}] \subset [a_i a_j, b_i b_j] \cap [c_\ell, d_\ell]$$

where the left hand side is non-empty as both $a_i a_j$ and e^{λ^+} are bounded above by $b_i b_j$ and by e^{λ^-}. If (7) holds, then $[a_i a_j, b_i b_j]$ contains $[e^{\lambda^-}, e^{\lambda^+}]$ and therefore intersects both $[c_\ell, d_\ell]$ and $[c_\ell, d_\ell]$.

Acknowledgements The author would like to thank Keith Burns, Kal Nanes, Charles Pugh, Raúl Ures, and Amie Wilkinson for their helpful comments, as well as the Fields Institute in Toronto, for their wonderful hospitality during the preparation of this paper.

References

Instituto Nacional de Matemática Pura e Aplicada
E-mail address: andy@impa.br